-5x(2x+14)=-2(x+63)

Simple and best practice solution for -5x(2x+14)=-2(x+63) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5x(2x+14)=-2(x+63) equation:



-5x(2x+14)=-2(x+63)
We move all terms to the left:
-5x(2x+14)-(-2(x+63))=0
We multiply parentheses
-10x^2-70x-(-2(x+63))=0
We calculate terms in parentheses: -(-2(x+63)), so:
-2(x+63)
We multiply parentheses
-2x-126
Back to the equation:
-(-2x-126)
We get rid of parentheses
-10x^2-70x+2x+126=0
We add all the numbers together, and all the variables
-10x^2-68x+126=0
a = -10; b = -68; c = +126;
Δ = b2-4ac
Δ = -682-4·(-10)·126
Δ = 9664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9664}=\sqrt{64*151}=\sqrt{64}*\sqrt{151}=8\sqrt{151}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-68)-8\sqrt{151}}{2*-10}=\frac{68-8\sqrt{151}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-68)+8\sqrt{151}}{2*-10}=\frac{68+8\sqrt{151}}{-20} $

See similar equations:

| 5+2x=-2x+5 | | (2w-5)w=230 | | -10-8x-x=1-7x+1 | | -2(x+4)-3x+2=-5 | | (P+33)+(p-38)=p | | 23=5(2+33x)-59x-105x+53 | | 1/4(x+12)-10=2 | | 13=4+4b-13 | | -5-8n=35 | | p/2-6=88 | | 160x+3=195x–2 | | -3(3m-10)-7=-5(m+1)+3,m | | 10x-2=3x+26 | | 12x15=6x+9 | | -43-13x=20x+6 | | 3/4w-2/1w-4=12 | | 12+0.8b=8.2 | | 28-v/25=29 | | 4x-1=-5+3x+5 | | 1/4(x-12)-10=2 | | 5x+3+17x-16=10x-5 | | 2x+6x+8+-4=9x+-x+2+9 | | 2(5x-2)-2x-3=34 | | 5x+x=2x+7 | | 8x+11x+6=20x-5 | | 8x-3(2x+5)+x=4 | | x+7.5=13.1 | | 3x-4+17=6x-5 | | -35-n=-11 | | 18x+14=13x+24 | | 6z+9+9=4z+z+1+8 | | 2n+26=264 |

Equations solver categories