If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5t^2+20t+50=0
a = -5; b = 20; c = +50;
Δ = b2-4ac
Δ = 202-4·(-5)·50
Δ = 1400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1400}=\sqrt{100*14}=\sqrt{100}*\sqrt{14}=10\sqrt{14}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{14}}{2*-5}=\frac{-20-10\sqrt{14}}{-10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{14}}{2*-5}=\frac{-20+10\sqrt{14}}{-10} $
| 1t+00876=0876 | | 760-300h=10 | | -4(u-6)=-8+4 | | w-(-18)=-27 | | 82819t-918237=0987 | | -4×-10y=4 | | 6d-3d-2d+5=4d | | 737172=39818981n | | D=20-1.95x | | -1/2a+9=5 | | 12+0.5-1=4r | | -2(x=4)^2 | | 4×+5y=16 | | 250=-5(8n+14) | | 9w-7=2(w-7) | | -7(-3x+8)=-287 | | -5(y+6)=2y+19 | | 2n+0.5(n-9)=14n | | 7x+36=5(8x-6) | | 7-k=29 | | -5h-3(10=h)=-6 | | 0.75x+6=2(x-2) | | -6(-4x+6)=-156 | | 16x+20=19-3x+1 | | 3x-14+3=-8 | | 8x+12=4-4x | | 1/6=3*2/5b-2*2/3 | | 4+4x=12-8x | | -2/5p+1=3*2/5 | | -3(-6x-7)=-33 | | 4+4x=8-12x | | 5x+11x-1=16x+28 |