-5p-4(6-3p)=5(p-4)-12

Simple and best practice solution for -5p-4(6-3p)=5(p-4)-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5p-4(6-3p)=5(p-4)-12 equation:


Simplifying
-5p + -4(6 + -3p) = 5(p + -4) + -12
-5p + (6 * -4 + -3p * -4) = 5(p + -4) + -12
-5p + (-24 + 12p) = 5(p + -4) + -12

Reorder the terms:
-24 + -5p + 12p = 5(p + -4) + -12

Combine like terms: -5p + 12p = 7p
-24 + 7p = 5(p + -4) + -12

Reorder the terms:
-24 + 7p = 5(-4 + p) + -12
-24 + 7p = (-4 * 5 + p * 5) + -12
-24 + 7p = (-20 + 5p) + -12

Reorder the terms:
-24 + 7p = -20 + -12 + 5p

Combine like terms: -20 + -12 = -32
-24 + 7p = -32 + 5p

Solving
-24 + 7p = -32 + 5p

Solving for variable 'p'.

Move all terms containing p to the left, all other terms to the right.

Add '-5p' to each side of the equation.
-24 + 7p + -5p = -32 + 5p + -5p

Combine like terms: 7p + -5p = 2p
-24 + 2p = -32 + 5p + -5p

Combine like terms: 5p + -5p = 0
-24 + 2p = -32 + 0
-24 + 2p = -32

Add '24' to each side of the equation.
-24 + 24 + 2p = -32 + 24

Combine like terms: -24 + 24 = 0
0 + 2p = -32 + 24
2p = -32 + 24

Combine like terms: -32 + 24 = -8
2p = -8

Divide each side by '2'.
p = -4

Simplifying
p = -4

See similar equations:

| 4(x-2)+x=5x | | 13(v+1)-4v=3(3v+2)-7 | | 12w-8=4w-7 | | r(x)=100+15x-x^2 | | ln(6x+2)-ln(x+1)=ln(2x-1) | | h(t)=-16t^2+16t+36 | | -3y-7x=2 | | -16(x^2-2x+20.25)-324=0 | | T(8)=4n-5 | | -5(x+3)-x-6=-6(x+6)+15 | | -9p-24=84 | | -162=-7(-7x-4)+6 | | 112=7n-28 | | 15y^4-12y^3= | | 2=-6y+4 | | 3m+5n+6m= | | 8y-4=7 | | -16x^2+117.5=0 | | 16x-8=5(3x+2)-2 | | 7(6+8a)=-126 | | 16x-8=5(x+2)-2 | | 2.38= | | (14x^5+9x^2+4)+(13+4x^5+5x^2)=0 | | (2y-9)(3y+2)=0 | | 5u=-15 | | 4a+9b=-12 | | x+-3.9=4.4 | | 24=3(n-5) | | 6x^2-15x-10x-25= | | ab=5 | | 6x^2-15-10x-25= | | 12(v+3)-3v=3(v+2)-9 |

Equations solver categories