-5/8k+3/5=-8+7/6k

Simple and best practice solution for -5/8k+3/5=-8+7/6k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5/8k+3/5=-8+7/6k equation:



-5/8k+3/5=-8+7/6k
We move all terms to the left:
-5/8k+3/5-(-8+7/6k)=0
Domain of the equation: 8k!=0
k!=0/8
k!=0
k∈R
Domain of the equation: 6k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
-5/8k-(7/6k-8)+3/5=0
We get rid of parentheses
-5/8k-7/6k+8+3/5=0
We calculate fractions
864k^2/1200k^2+(-750k)/1200k^2+(-1400k)/1200k^2+8=0
We multiply all the terms by the denominator
864k^2+(-750k)+(-1400k)+8*1200k^2=0
Wy multiply elements
864k^2+9600k^2+(-750k)+(-1400k)=0
We get rid of parentheses
864k^2+9600k^2-750k-1400k=0
We add all the numbers together, and all the variables
10464k^2-2150k=0
a = 10464; b = -2150; c = 0;
Δ = b2-4ac
Δ = -21502-4·10464·0
Δ = 4622500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4622500}=2150$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2150)-2150}{2*10464}=\frac{0}{20928} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2150)+2150}{2*10464}=\frac{4300}{20928} =1075/5232 $

See similar equations:

| 9=1+8x–8 | | P=10-q | | 99+4.5g=153 | | 4y=8y-9y+6 | | 2(×)+3(y)=13 | | 15c-14c=19 | | 4g=532 | | 2.5x+4.3-5=3.3x-3.25 | | 9a/2=5 | | 8x^2-2x+6=-2 | | -2x-4=-1 | | 12h-11h=19 | | 25-6x=89 | | 2x/4-2=0 | | 4.2-x/5=-5.7 | | 7-11n=12 | | 11n-7=12 | | (6x)+(x-23)=180 | | 12=11n-7 | | 1/x=3/200 | | x.5x-5=x+15 | | 1/x=1/200 | | 3s+12=12 | | x+7=x/3-5=7 | | 6y+2y=480 | | 2-7;x=23 | | 6n+7-2-14=5n=1 | | (2z+7)(8-z)=0 | | 4(2x+5)-7=5x+6+3x+7 | | 6(x-10=6x-1 | | 2x+40=4x-27 | | 4t-3=7-t |

Equations solver categories