-5/8k+1/2=-1+6/7k

Simple and best practice solution for -5/8k+1/2=-1+6/7k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5/8k+1/2=-1+6/7k equation:



-5/8k+1/2=-1+6/7k
We move all terms to the left:
-5/8k+1/2-(-1+6/7k)=0
Domain of the equation: 8k!=0
k!=0/8
k!=0
k∈R
Domain of the equation: 7k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
-5/8k-(6/7k-1)+1/2=0
We get rid of parentheses
-5/8k-6/7k+1+1/2=0
We calculate fractions
392k^2/224k^2+(-140k)/224k^2+(-192k)/224k^2+1=0
We multiply all the terms by the denominator
392k^2+(-140k)+(-192k)+1*224k^2=0
Wy multiply elements
392k^2+224k^2+(-140k)+(-192k)=0
We get rid of parentheses
392k^2+224k^2-140k-192k=0
We add all the numbers together, and all the variables
616k^2-332k=0
a = 616; b = -332; c = 0;
Δ = b2-4ac
Δ = -3322-4·616·0
Δ = 110224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{110224}=332$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-332)-332}{2*616}=\frac{0}{1232} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-332)+332}{2*616}=\frac{664}{1232} =83/154 $

See similar equations:

| 177=21-x | | (x+2)^2=0 | | −4y−10=4(y−3) | | x+2=(3x+3) | | 0=x^2-135x+4 | | x2=42+x | | 5x^2+6x-44=0 | | x2-10x-1=0 | | x2+6x-44=0 | | 3u-4=-13 | | 4z-8z=32 | | 5x^2+6x+-44=0 | | 130-x=233 | | 2y+29=41 | | 40=3x-8 | | x2+3x=10 | | -3-2r=r+3 | | 7+3x+12=3x+1 | | 8x^2+2x+4=-x^2-10x | | 70(2x-50)=180 | | x2+9x-10=0 | | -3+p/9=-2 | | (-4x)+7=15* | | 5+1/2x=17 | | 4x=12+12(-x) | | 20=-4/9v | | 6+1-x+3x=3 | | x+21+3x=-21-3x-28 | | -y^2+5y-5=0 | | v/6+10=11 | | 25x-3=30x+1 | | 4z+28=2(6z-2) |

Equations solver categories