If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5/6x-7/30+1/5x=-52
We move all terms to the left:
-5/6x-7/30+1/5x-(-52)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 5x!=0We add all the numbers together, and all the variables
x!=0/5
x!=0
x∈R
-5/6x+1/5x+52-7/30=0
We calculate fractions
(-1050x^2)/2700x^2+(-2250x)/2700x^2+540x/2700x^2+52=0
We multiply all the terms by the denominator
(-1050x^2)+(-2250x)+540x+52*2700x^2=0
We add all the numbers together, and all the variables
(-1050x^2)+540x+(-2250x)+52*2700x^2=0
Wy multiply elements
(-1050x^2)+140400x^2+540x+(-2250x)=0
We get rid of parentheses
-1050x^2+140400x^2+540x-2250x=0
We add all the numbers together, and all the variables
139350x^2-1710x=0
a = 139350; b = -1710; c = 0;
Δ = b2-4ac
Δ = -17102-4·139350·0
Δ = 2924100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2924100}=1710$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1710)-1710}{2*139350}=\frac{0}{278700} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1710)+1710}{2*139350}=\frac{3420}{278700} =57/4645 $
| 180=6a+25 | | -3/4x-1.5=2x+15 | | 45-4x=92 | | 4.25+(x+7)=53.75 | | 4/7X6=n | | 4(x)+4(2x+4)=86 | | 12h-5=-17 | | 6a+25=2a+35 | | 7a^2-12a-4=0 | | 11/3-3y=2/3(-3+4) | | q4=4q= | | 18=x-9* | | 35a^2+41a-24=0 | | x+5+x=5(x+1) | | 0.4(x+200)=9000 | | 130+x=3/8 | | 60=-x/3 | | 2n+13+-8n=15 | | 1+1=x+4 | | –2j=4 | | 18x-22=16x-12 | | (100-40x)+30x=90 | | 5v^2-47v+56=0 | | 3x+6=30. | | -6=-8(9+4)+8a | | 99=-8x+3 | | 3/4(5x-3)+8=17 | | 2(0+7)=-4x+14 | | s4=4s= | | (9x+18)=(2x+19) | | 24=-19+b | | 2=s-5 |