-5/6x+10=1/2x+2

Simple and best practice solution for -5/6x+10=1/2x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5/6x+10=1/2x+2 equation:



-5/6x+10=1/2x+2
We move all terms to the left:
-5/6x+10-(1/2x+2)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 2x+2)!=0
x∈R
We get rid of parentheses
-5/6x-1/2x-2+10=0
We calculate fractions
(-10x)/12x^2+(-6x)/12x^2-2+10=0
We add all the numbers together, and all the variables
(-10x)/12x^2+(-6x)/12x^2+8=0
We multiply all the terms by the denominator
(-10x)+(-6x)+8*12x^2=0
Wy multiply elements
96x^2+(-10x)+(-6x)=0
We get rid of parentheses
96x^2-10x-6x=0
We add all the numbers together, and all the variables
96x^2-16x=0
a = 96; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·96·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*96}=\frac{0}{192} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*96}=\frac{32}{192} =1/6 $

See similar equations:

| (8x+7)16-7(3)=2(3)(6)7+63 | | 17t+20=14t-16 | | 18+17m=16m | | 7+-0.5=d | | 77+11y= | | 16+18u-1=20u-19 | | (x18-4)17-4=5-6(7-8)4 | | -5x-3x+2=-8x+2= | | 8x-20+10x-1=41 | | -20t+16-8=-16-18t | | -7b+3=3-7b | | 9=3+x/4 | | 5k=3k+16 | | 6(x+7)+4=-4(x-5)-2 | | 2g=-6+g | | 1/2(14x-16)+(2x+3x+10)=90 | | -19.4+6.5p=6.9p-12.12 | | 3(5x-)=4(5x+3) | | 98÷x+9=23 | | -6-5r=-6r-10 | | 16h-14=14h+16 | | 19/x+9=23 | | 4^n×4^2=16,384 | | 10s+9=13s-19-s | | 10-8b=2-9b-2 | | -6u-1=-10-9u | | x2-x+1/4=x/4. | | x=24.7/x | | -9.2k=-8.5k+8.4 | | 13.2m+11.66-13.7m=11.66-1.8m | | x=24.7 | | 3x+5x-112=0 |

Equations solver categories