-5/6h-2/3h=-24

Simple and best practice solution for -5/6h-2/3h=-24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5/6h-2/3h=-24 equation:



-5/6h-2/3h=-24
We move all terms to the left:
-5/6h-2/3h-(-24)=0
Domain of the equation: 6h!=0
h!=0/6
h!=0
h∈R
Domain of the equation: 3h!=0
h!=0/3
h!=0
h∈R
We add all the numbers together, and all the variables
-5/6h-2/3h+24=0
We calculate fractions
(-15h)/18h^2+(-12h)/18h^2+24=0
We multiply all the terms by the denominator
(-15h)+(-12h)+24*18h^2=0
Wy multiply elements
432h^2+(-15h)+(-12h)=0
We get rid of parentheses
432h^2-15h-12h=0
We add all the numbers together, and all the variables
432h^2-27h=0
a = 432; b = -27; c = 0;
Δ = b2-4ac
Δ = -272-4·432·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{729}=27$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-27)-27}{2*432}=\frac{0}{864} =0 $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-27)+27}{2*432}=\frac{54}{864} =1/16 $

See similar equations:

| -5x+5x+2x-12x=-16 | | 2(3c+12)=6 | | -5x+5x+2x-12x=-6 | | (35+y)-12=36 | | -2y+26=7(y+5) | | 8q+1+57+90=180 | | 10x+57+7x=180 | | 6x+40+3x+5=18 | | 6x-2+5x+4+90=180 | | 38+38+4x+4=180 | | 180-8x-15+5x=x | | 9w-52=164 | | 9w+52=164 | | w/8=5=16 | | 3d=d+20 | | 5x+3(x*4)=28 | | x+40=63 | | x+40+63=180 | | 3x-5+28=x | | f(5)=-1.f(0)=-5 | | 3x-15=-32 | | 6x-14=-40 | | 10r+11=164-7r | | 4x-13=-40 | | 3x+14=-31 | | 2x+12=-33 | | 3x-2=-30 | | 5x-4=-37 | | 3x-15=-29 | | 8x-17=10x-5 | | 5(-v+5)-6v=80 | | 3x+10=17x |

Equations solver categories