-5/4c-1/2=-3+5/8c

Simple and best practice solution for -5/4c-1/2=-3+5/8c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5/4c-1/2=-3+5/8c equation:



-5/4c-1/2=-3+5/8c
We move all terms to the left:
-5/4c-1/2-(-3+5/8c)=0
Domain of the equation: 4c!=0
c!=0/4
c!=0
c∈R
Domain of the equation: 8c)!=0
c!=0/1
c!=0
c∈R
We add all the numbers together, and all the variables
-5/4c-(5/8c-3)-1/2=0
We get rid of parentheses
-5/4c-5/8c+3-1/2=0
We calculate fractions
(-256c^2)/128c^2+(-160c)/128c^2+(-80c)/128c^2+3=0
We multiply all the terms by the denominator
(-256c^2)+(-160c)+(-80c)+3*128c^2=0
Wy multiply elements
(-256c^2)+384c^2+(-160c)+(-80c)=0
We get rid of parentheses
-256c^2+384c^2-160c-80c=0
We add all the numbers together, and all the variables
128c^2-240c=0
a = 128; b = -240; c = 0;
Δ = b2-4ac
Δ = -2402-4·128·0
Δ = 57600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{57600}=240$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-240)-240}{2*128}=\frac{0}{256} =0 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-240)+240}{2*128}=\frac{480}{256} =1+7/8 $

See similar equations:

| −2(x+5)=6 | | -8x+47=-41 | | 6(x-2)-4(x-8)=0 | | 10(x+5)=6(2x-7) | | 9=(3-2w) | | j/8− 1=2 | | 2.8x+5=10 | | x+x+2x+3x+4x+5x=100 | | (16x-28)=180 | | 2(x-1=)-26 | | -3-6x-6=18x+18 | | 5(3x-7)-2(4x+9)=3 | | -7(x+2)-8=11 | | 4x-7x-7=-3x+4-7 | | -14x=-770 | | -2=2x^2+6x-5 | | y3−9=12 | | -3{x-2}+9x=6 | | 8x+x+3=75 | | 5/6(12n-18)+7=3/7(21n-35) | | a/13=3 | | Y=-3.3x-7.8 | | 1x/5+4=10 | | 1/3(15x+3)=5x+4 | | 7x+3.5=2 | | 35+15x=5+25x | | 23.15=6.2+3x | | -6p=-973.8 | | -7=2x^2+6x | | 2m+8+4=3m-31 | | -5/6y-2/3y=-24 | | 7x=2+3.5 |

Equations solver categories