-5/2k+2/3=4-2/5k

Simple and best practice solution for -5/2k+2/3=4-2/5k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5/2k+2/3=4-2/5k equation:



-5/2k+2/3=4-2/5k
We move all terms to the left:
-5/2k+2/3-(4-2/5k)=0
Domain of the equation: 2k!=0
k!=0/2
k!=0
k∈R
Domain of the equation: 5k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
-5/2k-(-2/5k+4)+2/3=0
We get rid of parentheses
-5/2k+2/5k-4+2/3=0
We calculate fractions
100k^2/90k^2+(-225k)/90k^2+36k/90k^2-4=0
We multiply all the terms by the denominator
100k^2+(-225k)+36k-4*90k^2=0
We add all the numbers together, and all the variables
100k^2+36k+(-225k)-4*90k^2=0
Wy multiply elements
100k^2-360k^2+36k+(-225k)=0
We get rid of parentheses
100k^2-360k^2+36k-225k=0
We add all the numbers together, and all the variables
-260k^2-189k=0
a = -260; b = -189; c = 0;
Δ = b2-4ac
Δ = -1892-4·(-260)·0
Δ = 35721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{35721}=189$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-189)-189}{2*-260}=\frac{0}{-520} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-189)+189}{2*-260}=\frac{378}{-520} =-189/260 $

See similar equations:

| 22a=27 | | 15x+7x-90=150 | | x-(3x+1)/15=1/3 | | 16=n-4 | | u12=2 | | (3x)=(3x+18) | | 15-3a=3 | | 7x+4+4x+-22=180 | | 1=6x=-17 | | -7q=350 | | I=x-9 | | 7q=350 | | -9(b-91)=-18 | | -7x=350 | | a+2/7=-6 | | 60+(x+20)+3x=360 | | 5.9b=30.68 | | 89=33-4c | | 8x-24=2x+8 | | 14c-48=2c | | 2q-44=42 | | -4=4+4x | | 6x-9=2(2x=8) | | 62a-4=4a+45 | | 7x+1=x−1 | | -22=-17+11r | | 8x=7-5x | | 7(x−5)=7x−35 | | 3-2v=9-v | | 7(x−5)=7x+35 | | 7x+1=7x−1 | | 10(5-n)1=29 |

Equations solver categories