-5(x/2+16)-16=3/2x

Simple and best practice solution for -5(x/2+16)-16=3/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5(x/2+16)-16=3/2x equation:



-5(x/2+16)-16=3/2x
We move all terms to the left:
-5(x/2+16)-16-(3/2x)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-5(x/2+16)-(+3/2x)-16=0
We multiply parentheses
-5x-(+3/2x)-80-16=0
We get rid of parentheses
-5x-3/2x-80-16=0
We multiply all the terms by the denominator
-5x*2x-80*2x-16*2x-3=0
Wy multiply elements
-10x^2-160x-32x-3=0
We add all the numbers together, and all the variables
-10x^2-192x-3=0
a = -10; b = -192; c = -3;
Δ = b2-4ac
Δ = -1922-4·(-10)·(-3)
Δ = 36744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{36744}=\sqrt{4*9186}=\sqrt{4}*\sqrt{9186}=2\sqrt{9186}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-192)-2\sqrt{9186}}{2*-10}=\frac{192-2\sqrt{9186}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-192)+2\sqrt{9186}}{2*-10}=\frac{192+2\sqrt{9186}}{-20} $

See similar equations:

| 3/4x-9=-11 | | 2x+6=13x+62 | | –7=-16-k | | 7x-6/3=12 | | 19=5x+1-3 | | 9x-11-7x-10=x+3 | | 3x+2-(4x-6)=8x+1 | | 3x +5= 11 | | 5x+37=122 | | 4y-8-2y=4y | | –2(x–30)=-6x | | 1/4x-16=20 | | x*0.98=163 | | X-3/7+x+5/3=1 | | 5x+37=123 | | 6x+6x5=19 | | 10/85=8/x | | 36=-6x-7x-27 | | 466=3x-3/x | | 140/147=195.25/x | | 2x-40+3x=105 | | 1.3/4y=2 | | 13/4y=2 | | 6y+2(16-3y)=32 | | 28=9x-4+5x | | 4(x/5+3)=60 | | 2(m-4)-m=2 | | 14+6.8n=10+7.2n | | 8.85+1.50r=26.95 | | p−1/2=3/4−1/2p | | x3−14=9 | | p−1 2=3 4−1 2p |

Equations solver categories