-5(2w-2)8w=2(w+4)

Simple and best practice solution for -5(2w-2)8w=2(w+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -5(2w-2)8w=2(w+4) equation:



-5(2w-2)8w=2(w+4)
We move all terms to the left:
-5(2w-2)8w-(2(w+4))=0
We multiply parentheses
-80w^2+80w-(2(w+4))=0
We calculate terms in parentheses: -(2(w+4)), so:
2(w+4)
We multiply parentheses
2w+8
Back to the equation:
-(2w+8)
We get rid of parentheses
-80w^2+80w-2w-8=0
We add all the numbers together, and all the variables
-80w^2+78w-8=0
a = -80; b = 78; c = -8;
Δ = b2-4ac
Δ = 782-4·(-80)·(-8)
Δ = 3524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3524}=\sqrt{4*881}=\sqrt{4}*\sqrt{881}=2\sqrt{881}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-2\sqrt{881}}{2*-80}=\frac{-78-2\sqrt{881}}{-160} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+2\sqrt{881}}{2*-80}=\frac{-78+2\sqrt{881}}{-160} $

See similar equations:

| 7(w-5)-3=-4(-5w+6)-9w | | 4(y+1)=6y-16 | | 3x-36=-6(x-6) | | 3x+4+54=90 | | x-(x*0.0205)=1000 | | (4d5-15d3-5d2+15d+9)y=0 | | 92-m=32.5 | | m+18.6=25.19 | | 3^((2)(x+1)-8*3^(x+1)=9 | | 7x+8=8x+10 | | 4x+6+2x-6=30 | | 15+d=40 | | 15x=-0.15 | | 1/5g=3/5 | | 6x-(4*3)=24 | | 2x+(3*3)=17 | | 2x+(3x3)=17 | | 11s-7=9s+10 | | 9r+6=5r+18 | | 10q-5=7q+4 | | 8p+3=6p+11 | | 7m-2=5m+8 | | 4b+7=3b+14 | | 11s-6=50 | | y+6/5=2.3 | | 5x=5=40-2x | | 4x+7=63-3x=x=8 | | -23=2r-5 | | 0.25e+1.75=4.25 | | 12=u/31.25+7 | | s+34/5=61/9 | | 81/6=23/4+m |

Equations solver categories