-4z-3/5z+6=-5/5z+6

Simple and best practice solution for -4z-3/5z+6=-5/5z+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4z-3/5z+6=-5/5z+6 equation:



-4z-3/5z+6=-5/5z+6
We move all terms to the left:
-4z-3/5z+6-(-5/5z+6)=0
Domain of the equation: 5z!=0
z!=0/5
z!=0
z∈R
Domain of the equation: 5z+6)!=0
z∈R
We get rid of parentheses
-4z-3/5z+5/5z-6+6=0
We multiply all the terms by the denominator
-4z*5z-6*5z+6*5z-3+5=0
We add all the numbers together, and all the variables
-4z*5z-6*5z+6*5z+2=0
Wy multiply elements
-20z^2-30z+30z+2=0
We add all the numbers together, and all the variables
-20z^2+2=0
a = -20; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-20)·2
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*-20}=\frac{0-4\sqrt{10}}{-40} =-\frac{4\sqrt{10}}{-40} =-\frac{\sqrt{10}}{-10} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*-20}=\frac{0+4\sqrt{10}}{-40} =\frac{4\sqrt{10}}{-40} =\frac{\sqrt{10}}{-10} $

See similar equations:

| 2x+6=6-3x | | b4− 2= 2 | | b/4−2=2 | | 6^((x^2)-9)=36^4x | | 3/4(2x-5x)-5/6(7-5x)=7x/3 | | 11−3b=2 | | f/3+15=19 | | f/3+ 15= 19 | | -9w+12=3w-60 | | p/3+13=15 | | 7n+1=2n-9 | | 4x+17+3x=2x+25+3x | | x+5=4(6x+10) | | 63=x+2x+4x | | 8x+2=5x=52 | | 4n-2(n-8)=-34 | | (2x+1)(x+1)=5x+5 | | -2=1/5x-1/5 | | 4t+7=t+17 | | 9/2x=25 | | -5(x-1)+6(x+4)=-2x+3 | | -6x+4=-5(4x+3) | | 7p+-18=3p+-2 | | 1/4x-3=-1 | | 2x+9=4×-18 | | X+3(x-2)=3x-2 | | 17-2p=7 | | 4x*x*x-24x*x+66x-24=0 | | 6x-2=79-3x | | -5x-13=-4x+8 | | 3c+7=22 | | 5c-2=10c |

Equations solver categories