If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2+x+3=0
a = -4; b = 1; c = +3;
Δ = b2-4ac
Δ = 12-4·(-4)·3
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-7}{2*-4}=\frac{-8}{-8} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+7}{2*-4}=\frac{6}{-8} =-3/4 $
| 4(3-x)+8=2(5-3x) | | 2x2–5x+3=0 | | 5x-2.5x+6x-3=x(2x-1) | | 5x2+26x+24=0 | | 15.g=15135 | | 2^(x+3)=2^(2x) | | 2^((x+3))=2^(2x) | | D^2+4d=-3 | | 1/3x-7=57 | | p-41=68 | | 14/p=2;p=7 | | 1+2i/2-3i=0 | | 13-w=10;w=2 | | 12(5+2y)=47-(5-9y) | | 60=5-3y | | 7/8-3/4x=-6 | | x^2-0.6x+0.4=0 | | 7/8-3/4x=6 | | 2v=12;v=10 | | -13c+18=18-7c | | -2(3x+x)=10 | | 3^(2x+7)=9 | | .4(k−1.3)=15.12 | | 7500+100.25x=6296+175.5x | | x+x/2=240 | | 10/x=95/28 | | 7500+100.25x=6296+175.5 | | 17-d/13=15 | | x+30+2x+5=180 | | 9/5=162/x | | 2v^2+2v-6=0 | | B(x)=25.50-0.06x |