If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x-5=(x+9)(x+9)
We move all terms to the left:
-4x-5-((x+9)(x+9))=0
We multiply parentheses ..
-((+x^2+9x+9x+81))-4x-5=0
We calculate terms in parentheses: -((+x^2+9x+9x+81)), so:We add all the numbers together, and all the variables
(+x^2+9x+9x+81)
We get rid of parentheses
x^2+9x+9x+81
We add all the numbers together, and all the variables
x^2+18x+81
Back to the equation:
-(x^2+18x+81)
-4x-(x^2+18x+81)-5=0
We get rid of parentheses
-x^2-4x-18x-81-5=0
We add all the numbers together, and all the variables
-1x^2-22x-86=0
a = -1; b = -22; c = -86;
Δ = b2-4ac
Δ = -222-4·(-1)·(-86)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{35}}{2*-1}=\frac{22-2\sqrt{35}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{35}}{2*-1}=\frac{22+2\sqrt{35}}{-2} $
| (3/5)b=-2,b | | 4/2x+6/12=20/3 | | -3z/4=3 | | 12-4r=-8 | | 17=w/4+8 | | -1-5/4x=-(x+1/2) | | -18x+9=10x+4 | | -0.0828x+89.472=-0.0013x+64.3 | | s/2-6=8 | | -.253+x=1.245 | | X-9+27=9x | | 4x+7=-1,x | | 10.6w+55=3.4-(w-22) | | -5x-1/2+2=1/3 | | 3/5a-10=62 | | 7x=(2x-18) | | 12q+6q=14+5q | | 28+4m=16+2m | | 12x-15=7x-5 | | 2.)-3x+6=27 | | 5x-(x-18)=-2(x+12 | | 8/3(x)-2=2/3(x)-12 | | 8x+x=3591 | | (x)=√x+7x−8 | | |x|-8=2 | | 3w+10=5w | | 16x30=12x14 | | -0.0732x+88.363=-5E-15x+63.7 | | -4w=-3 | | 4x(x-6)=44 | | -21.5+1.8x=12.7+4.8 | | 1/4n+8=16 |