-4x+12.5=1/4x+4

Simple and best practice solution for -4x+12.5=1/4x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4x+12.5=1/4x+4 equation:



-4x+12.5=1/4x+4
We move all terms to the left:
-4x+12.5-(1/4x+4)=0
Domain of the equation: 4x+4)!=0
x∈R
We get rid of parentheses
-4x-1/4x-4+12.5=0
We multiply all the terms by the denominator
-4x*4x-4*4x+(12.5)*4x-1=0
We multiply parentheses
-4x*4x-4*4x+50x-1=0
Wy multiply elements
-16x^2-16x+50x-1=0
We add all the numbers together, and all the variables
-16x^2+34x-1=0
a = -16; b = 34; c = -1;
Δ = b2-4ac
Δ = 342-4·(-16)·(-1)
Δ = 1092
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1092}=\sqrt{4*273}=\sqrt{4}*\sqrt{273}=2\sqrt{273}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{273}}{2*-16}=\frac{-34-2\sqrt{273}}{-32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{273}}{2*-16}=\frac{-34+2\sqrt{273}}{-32} $

See similar equations:

| 2/5b+-3=2b+-18 | | 0=u2-54 | | 5(u-6)-4=-5(-4u+6)-9u | | 6+2n=1 | | x+5=2x-10= | | 13h+4=15h-7 | | 3x-16=74-2x | | 1=7/10c | | 1.37b=0 | | R2+13t+36=0 | | R2+14t+36=0 | | -3(-1)+y=3 | | 0=-0.19x^2+8 | | 85=3x+13=180 | | 1=62x4 | | (x-1)(x-2)(x+2)=60 | | 3(2v-9=15 | | 28*x=31 | | 4=3u+28 | | 3n-15=5n-13 | | 2(6+x)=24(6) | | 40=-y+179 | | 1/3(6+3a)=3a | | -18t=18t-5(5t-11) | | -4(8j-12)=4(-6-17j) | | 3^4^x=3^12 | | -7(2z-18)=-16z | | 10b+-45=-43= | | 5x-13=26-8x | | -8(y-1.25)=4= | | x+2x-(x+3)=x-(x-5) | | (15x-10)+(10x+25)=180 |

Equations solver categories