If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x(2x+5)=2(-x-9)-6
We move all terms to the left:
-4x(2x+5)-(2(-x-9)-6)=0
We add all the numbers together, and all the variables
-4x(2x+5)-(2(-1x-9)-6)=0
We multiply parentheses
-8x^2-20x-(2(-1x-9)-6)=0
We calculate terms in parentheses: -(2(-1x-9)-6), so:We get rid of parentheses
2(-1x-9)-6
We multiply parentheses
-2x-18-6
We add all the numbers together, and all the variables
-2x-24
Back to the equation:
-(-2x-24)
-8x^2-20x+2x+24=0
We add all the numbers together, and all the variables
-8x^2-18x+24=0
a = -8; b = -18; c = +24;
Δ = b2-4ac
Δ = -182-4·(-8)·24
Δ = 1092
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1092}=\sqrt{4*273}=\sqrt{4}*\sqrt{273}=2\sqrt{273}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{273}}{2*-8}=\frac{18-2\sqrt{273}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{273}}{2*-8}=\frac{18+2\sqrt{273}}{-16} $
| -5(5-3x)=-115 | | 4x^2-10x+8=-2x^2+8 | | 8-(x+19)+27=7x | | -d+(-5d)=18 | | -3(x+7)/3=-11 | | 182=5(5+5p)+7 | | -3/4m-1/2=2+14m | | 96=69(k+8) | | -(3x-2)=18 | | -d+-5d=18 | | 8(3x-9)-4(2x+6)=16 | | -13=v+43 | | 3x-5+4x+10=90 | | 4a-3=2a-7 | | 4(x+6)=18+7 | | 4(4x+6)=29 | | 7+4x-2=24 | | 2x+3=17x=7 | | 8x–3(2x–4)=3 | | 8(-8+k)=-152 | | 52.6+y=125.3 | | d2=61 | | 2(4x–11)=10 | | 7/128=x/12 | | 18−6x=78 | | 6w+10=-10-10+w | | (5÷x)-(3÷0.16x)=0 | | v/2+8=29 | | 18-8x^2=-54 | | 81=a-3 | | 2f+10=7f-10 | | 9.9-16x=-15.6-x |