-4x(2x+3)=-2(4x+3)

Simple and best practice solution for -4x(2x+3)=-2(4x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4x(2x+3)=-2(4x+3) equation:



-4x(2x+3)=-2(4x+3)
We move all terms to the left:
-4x(2x+3)-(-2(4x+3))=0
We multiply parentheses
-8x^2-12x-(-2(4x+3))=0
We calculate terms in parentheses: -(-2(4x+3)), so:
-2(4x+3)
We multiply parentheses
-8x-6
Back to the equation:
-(-8x-6)
We get rid of parentheses
-8x^2-12x+8x+6=0
We add all the numbers together, and all the variables
-8x^2-4x+6=0
a = -8; b = -4; c = +6;
Δ = b2-4ac
Δ = -42-4·(-8)·6
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{13}}{2*-8}=\frac{4-4\sqrt{13}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{13}}{2*-8}=\frac{4+4\sqrt{13}}{-16} $

See similar equations:

| 6(8-2x)=-3(4x+3) | | d+2(36)-5+113=180 | | -21=-7(a-2) | | (8e-6)+(7e+6)=180 | | u-8.53=1.27 | | x^-0.25=-1 | | y-5.55=1.1 | | y=5.55=1.1 | | 4.8/1.6=1.6y/1.6 | | y-2.1+2.1=6.4+2.1 | | y-21=6.4 | | (10x-65)+(3x-15)=180 | | 2x^2+81=0 | | 2x+4(x-3)=180 | | 1/4s=12 | | 24+(78-m)=36 | | 8e+8+9e-3=80 | | 8e+8+9e-8=80 | | 7e/12=3(e+6) | | 2y+(16-2y)=16 | | Y-1=5/3(x+2) | | 9x+4x+8-10x=23 | | 10x-12=8x-13 | | 6x-36=-66 | | 2(x-4)=3(2x+5) | | 0.5x^2-x+13=0 | | m/2=2m-5 | | 6^-x=1/126 | | x+x(0.175)=413597 | | 18=2k+12-8k | | X3+x9=6 | | 5^(x-1)=28 |

Equations solver categories