-4x(-10-8x)=-(12x-14)

Simple and best practice solution for -4x(-10-8x)=-(12x-14) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4x(-10-8x)=-(12x-14) equation:



-4x(-10-8x)=-(12x-14)
We move all terms to the left:
-4x(-10-8x)-(-(12x-14))=0
We add all the numbers together, and all the variables
-4x(-8x-10)-(-(12x-14))=0
We multiply parentheses
32x^2+40x-(-(12x-14))=0
We calculate terms in parentheses: -(-(12x-14)), so:
-(12x-14)
We get rid of parentheses
-12x+14
Back to the equation:
-(-12x+14)
We get rid of parentheses
32x^2+40x+12x-14=0
We add all the numbers together, and all the variables
32x^2+52x-14=0
a = 32; b = 52; c = -14;
Δ = b2-4ac
Δ = 522-4·32·(-14)
Δ = 4496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4496}=\sqrt{16*281}=\sqrt{16}*\sqrt{281}=4\sqrt{281}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-4\sqrt{281}}{2*32}=\frac{-52-4\sqrt{281}}{64} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+4\sqrt{281}}{2*32}=\frac{-52+4\sqrt{281}}{64} $

See similar equations:

| 7=p+-42 | | 2y-3=36 | | 0.25(6x-2)=x-2 | | -4x(-10-8x)=(12x-14) | | c-7.4=6 | | t-92=-63 | | -3x-1=-3x+8+6x | | x-5.2=-18.78 | | (2x+4)-3=3 | | 3/2(4x-2)-3x=5/4-(x-2) | | )18=6(2x+8) | | h/4=3.44 | | c-7.5=6 | | y=0.3–500 | | -7(4x+7)=3+49-4-6x | | 4t=12.8 | | y-11.44=2.56 | | 2x+4=6x+14-10x | | 5x-2•(-2x/3-23/3)=-48 | | 3(b=4)+5b=44 | | –6y=–2–2 | | w-8.9=3.9 | | 4.5x1/4=18 | | x+2+2x-8=4x-11 | | 85+x+2=90 | | 2.65=q/2 | | 8+2x-5=23 | | x+2x+3+3x-9=36 | | 7(m-2)=4 | | 13.65=f+1.8 | | m/3=1.34 | | 2(3u+7)=4(-3-2u) |

Equations solver categories