If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4t(t+6)=0
We multiply parentheses
-4t^2-24t=0
a = -4; b = -24; c = 0;
Δ = b2-4ac
Δ = -242-4·(-4)·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24}{2*-4}=\frac{0}{-8} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24}{2*-4}=\frac{48}{-8} =-6 $
| X2+6=4x | | 8q=36/q+4q | | 3(4x-1)+5(2x+3)=12 | | 38+x=1 | | x=0.774596669241483 | | 4(x+7)=6(x+4) | | 20x-13x=35 | | 2z/6-2=1 | | 48-12x=12 | | 7m-4=9m+7 | | x/10+6=6 | | 5x10=-35 | | 10h-10=76 | | -10/3=5w | | 8(25-p)=80 | | 2/3(4/5x+2/1)=-1 | | y−5/3=4/5 | | 2x(x=4 | | z^2+5z-15=0 | | 29+5y=43+3y | | Y+7(y=8 | | F(x)=3x^2+12x+2 | | a+4(a=3 | | 9y(y=3 | | 4x+2=-7x+14 | | 8u=4 | | (2x-7)(-x-7)=0 | | 3(v-4)=-5v-20 | | F(2)=7-4x | | 2(3x-7)^2=50 | | -5x-11=-7(x+3) | | 7p+13=50 |