-4n(1-2n)=4n+4(n+5)

Simple and best practice solution for -4n(1-2n)=4n+4(n+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4n(1-2n)=4n+4(n+5) equation:



-4n(1-2n)=4n+4(n+5)
We move all terms to the left:
-4n(1-2n)-(4n+4(n+5))=0
We add all the numbers together, and all the variables
-4n(-2n+1)-(4n+4(n+5))=0
We multiply parentheses
8n^2-4n-(4n+4(n+5))=0
We calculate terms in parentheses: -(4n+4(n+5)), so:
4n+4(n+5)
We multiply parentheses
4n+4n+20
We add all the numbers together, and all the variables
8n+20
Back to the equation:
-(8n+20)
We get rid of parentheses
8n^2-4n-8n-20=0
We add all the numbers together, and all the variables
8n^2-12n-20=0
a = 8; b = -12; c = -20;
Δ = b2-4ac
Δ = -122-4·8·(-20)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{784}=28$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-28}{2*8}=\frac{-16}{16} =-1 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+28}{2*8}=\frac{40}{16} =2+1/2 $

See similar equations:

| 10^x+3=57 | | 11x-58=73 | | 18x=2750 | | 0.85(x+105)=170 | | 3(4x+2)=12x+ | | x^2/25=36 | | -2x+10=-3+2(x+3) | | 6x+2(x+5)=8x+10 | | 12.5=-x+7 | | k+1/8=11/1/4 | | 0.25(x+5)=3 | | 10=m/80 | | 7.5=x2.25 | | -3.6(v+4)=2.7v-36 | | 4(3w-2)=-8+12w | | x(12-5x)=x | | 16x^2-46x+41=0 | | 2(8x-4)=6 | | 4y+6=4y+3 | | x/2=4/11 | | 36+3y=10y+40 | | 3x+25x+9=180 | | 3x-25x+9=180 | | x+.0825x=46932.30 | | -5+n/8=-6 | | 2x+30+120+2x+30+120=180 | | 7x-14=x-14+6x | | 2x-1/10=x+3/2x+6 | | v-4.76=3.87 | | 2n^2+12n-6=0 | | 4/5c+15=59 | | (x)0.27=150000 |

Equations solver categories