-4a(-7-3a)=28-2a

Simple and best practice solution for -4a(-7-3a)=28-2a equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4a(-7-3a)=28-2a equation:


Simplifying
-4a(-7 + -3a) = 28 + -2a
(-7 * -4a + -3a * -4a) = 28 + -2a
(28a + 12a2) = 28 + -2a

Solving
28a + 12a2 = 28 + -2a

Solving for variable 'a'.

Reorder the terms:
-28 + 28a + 2a + 12a2 = 28 + -2a + -28 + 2a

Combine like terms: 28a + 2a = 30a
-28 + 30a + 12a2 = 28 + -2a + -28 + 2a

Reorder the terms:
-28 + 30a + 12a2 = 28 + -28 + -2a + 2a

Combine like terms: 28 + -28 = 0
-28 + 30a + 12a2 = 0 + -2a + 2a
-28 + 30a + 12a2 = -2a + 2a

Combine like terms: -2a + 2a = 0
-28 + 30a + 12a2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(-14 + 15a + 6a2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-14 + 15a + 6a2)' equal to zero and attempt to solve: Simplifying -14 + 15a + 6a2 = 0 Solving -14 + 15a + 6a2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. -2.333333333 + 2.5a + a2 = 0 Move the constant term to the right: Add '2.333333333' to each side of the equation. -2.333333333 + 2.5a + 2.333333333 + a2 = 0 + 2.333333333 Reorder the terms: -2.333333333 + 2.333333333 + 2.5a + a2 = 0 + 2.333333333 Combine like terms: -2.333333333 + 2.333333333 = 0.000000000 0.000000000 + 2.5a + a2 = 0 + 2.333333333 2.5a + a2 = 0 + 2.333333333 Combine like terms: 0 + 2.333333333 = 2.333333333 2.5a + a2 = 2.333333333 The a term is 2.5a. Take half its coefficient (1.25). Square it (1.5625) and add it to both sides. Add '1.5625' to each side of the equation. 2.5a + 1.5625 + a2 = 2.333333333 + 1.5625 Reorder the terms: 1.5625 + 2.5a + a2 = 2.333333333 + 1.5625 Combine like terms: 2.333333333 + 1.5625 = 3.895833333 1.5625 + 2.5a + a2 = 3.895833333 Factor a perfect square on the left side: (a + 1.25)(a + 1.25) = 3.895833333 Calculate the square root of the right side: 1.973786547 Break this problem into two subproblems by setting (a + 1.25) equal to 1.973786547 and -1.973786547.

Subproblem 1

a + 1.25 = 1.973786547 Simplifying a + 1.25 = 1.973786547 Reorder the terms: 1.25 + a = 1.973786547 Solving 1.25 + a = 1.973786547 Solving for variable 'a'. Move all terms containing a to the left, all other terms to the right. Add '-1.25' to each side of the equation. 1.25 + -1.25 + a = 1.973786547 + -1.25 Combine like terms: 1.25 + -1.25 = 0.00 0.00 + a = 1.973786547 + -1.25 a = 1.973786547 + -1.25 Combine like terms: 1.973786547 + -1.25 = 0.723786547 a = 0.723786547 Simplifying a = 0.723786547

Subproblem 2

a + 1.25 = -1.973786547 Simplifying a + 1.25 = -1.973786547 Reorder the terms: 1.25 + a = -1.973786547 Solving 1.25 + a = -1.973786547 Solving for variable 'a'. Move all terms containing a to the left, all other terms to the right. Add '-1.25' to each side of the equation. 1.25 + -1.25 + a = -1.973786547 + -1.25 Combine like terms: 1.25 + -1.25 = 0.00 0.00 + a = -1.973786547 + -1.25 a = -1.973786547 + -1.25 Combine like terms: -1.973786547 + -1.25 = -3.223786547 a = -3.223786547 Simplifying a = -3.223786547

Solution

The solution to the problem is based on the solutions from the subproblems. a = {0.723786547, -3.223786547}

Solution

a = {0.723786547, -3.223786547}

See similar equations:

| 8+7(x-8)=8-9(x-8) | | (6+9i)(2-5i)= | | C/-7+7.3=29.3 | | (4xy)(7xy)= | | (-x+8)/(x-3) | | R+1=14 | | 5p^2+3p-10=0 | | -3.6=-7d+34 | | -8t=27+7 | | x+14=(4x-7)/(-3) | | -38=8x+6 | | -5(4n+1)=40 | | x+0.002=36720 | | n-18=n-4 | | 4x^2+8x=180 | | H(x)=-9x^3+13x-4 | | 3q^2-18q+27=0 | | -4.6d=7d+34 | | x-10y=-85 | | 4y-21=9y | | -3n-5=16 | | 2x-9=4x+3 | | 9y-9=72 | | 15y-3=77-y | | -3h+90=45 | | 99999999999999999999999999999999999999999999999999+9-9+9-8+12385b+5b=13 | | 2/3-1/5 | | 9999999999+998b=5 | | (4+-3i)-(2+6i)=0 | | 125*123b+123v=135v+5 | | 0y-0=0 | | -5g+30=60 |

Equations solver categories