If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4/9x-5/36+1/4x=-36
We move all terms to the left:
-4/9x-5/36+1/4x-(-36)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
Domain of the equation: 4x!=0We add all the numbers together, and all the variables
x!=0/4
x!=0
x∈R
-4/9x+1/4x+36-5/36=0
We calculate fractions
(-720x^2)/3888x^2+(-1728x)/3888x^2+972x/3888x^2+36=0
We multiply all the terms by the denominator
(-720x^2)+(-1728x)+972x+36*3888x^2=0
We add all the numbers together, and all the variables
(-720x^2)+972x+(-1728x)+36*3888x^2=0
Wy multiply elements
(-720x^2)+139968x^2+972x+(-1728x)=0
We get rid of parentheses
-720x^2+139968x^2+972x-1728x=0
We add all the numbers together, and all the variables
139248x^2-756x=0
a = 139248; b = -756; c = 0;
Δ = b2-4ac
Δ = -7562-4·139248·0
Δ = 571536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{571536}=756$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-756)-756}{2*139248}=\frac{0}{278496} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-756)+756}{2*139248}=\frac{1512}{278496} =21/3868 $
| 10(4+2x)=112 | | 2x+14=298 | | Y=3+8.5x=-4 | | 17/8=r/8 | | 3x+12=-6+6x | | -4-2n=5.5 | | 11c+8c=10,450 | | y-0.19=-21.8 | | 9x+20+x=180 | | X+2-2x=5 | | f(-42)=-42/6-9 | | 7x-7-110=180 | | 30=2x-x | | 4f-46=38 | | 41c-(-8c)=49 | | 4f-46=28 | | 82=5(3x-1)-3 | | 16p^2+24p+9=18 | | -35j+21j+22j-43j-11j+(-35)=11 | | –3x+12=-6+6x | | 4n^2+6=0 | | t²-12=0 | | 12x+3+13x-8=180 | | |8=t|+3 | | 9-x=-3(x-3)+2x | | 2+5x-1=21 | | 2.5x+90+3.5=180 | | 0.5t+0.25(t-16)=4+.75t | | 12x+3-13x-8=180 | | 12-20/x=10 | | 2n2+9n=56 | | 20+5x=100+2x |