-4/9k-9/2=-4+2/7k

Simple and best practice solution for -4/9k-9/2=-4+2/7k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4/9k-9/2=-4+2/7k equation:



-4/9k-9/2=-4+2/7k
We move all terms to the left:
-4/9k-9/2-(-4+2/7k)=0
Domain of the equation: 9k!=0
k!=0/9
k!=0
k∈R
Domain of the equation: 7k)!=0
k!=0/1
k!=0
k∈R
We add all the numbers together, and all the variables
-4/9k-(2/7k-4)-9/2=0
We get rid of parentheses
-4/9k-2/7k+4-9/2=0
We calculate fractions
(-3969k^2)/252k^2+(-112k)/252k^2+(-72k)/252k^2+4=0
We multiply all the terms by the denominator
(-3969k^2)+(-112k)+(-72k)+4*252k^2=0
Wy multiply elements
(-3969k^2)+1008k^2+(-112k)+(-72k)=0
We get rid of parentheses
-3969k^2+1008k^2-112k-72k=0
We add all the numbers together, and all the variables
-2961k^2-184k=0
a = -2961; b = -184; c = 0;
Δ = b2-4ac
Δ = -1842-4·(-2961)·0
Δ = 33856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{33856}=184$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-184)-184}{2*-2961}=\frac{0}{-5922} =0 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-184)+184}{2*-2961}=\frac{368}{-5922} =-184/2961 $

See similar equations:

| -1=2-3y | | 9-3x(4-6)x3=0 | | (y+75)+(6y+49)=180 | | (5x+21)+(11x-65)=180 | | (5y+77)+(98)=180 | | 12x(10)+2=3x-6 | | (7x+75)+(17x+57)=180 | | (20y-9)+(y+84)=180 | | 5x+15-2=5(4x+3) | | x+110+90+x=360 | | (x+96)+(x+82)=180 | | 3(w-1)=3 | | 5-x=48 | | 210+0.25x=392.50 | | (2y-63)+(y-6)=180 | | 210+0.25x=329.50 | | 4+8(2x-3)-2(6x-0)=0 | | (2y–63)+(y-6)=180 | | 170+0.25x=395 | | X+9y=-50 | | (7x-29)+90+(3x-1)=180 | | -2=v/5-8 | | 170+x0.25=395 | | 10v=6v+12 | | (x+50)+95=180 | | 6y+72=180 | | 2y+76=180 | | 4x+26=x-8 | | 7/8y-5/8=15/4 | | 3u+7=0 | | 2x+12+3x-5+x+23=180 | | 12y+96=180 |

Equations solver categories