If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4/7k+6/5=-6+7/3k
We move all terms to the left:
-4/7k+6/5-(-6+7/3k)=0
Domain of the equation: 7k!=0
k!=0/7
k!=0
k∈R
Domain of the equation: 3k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-4/7k-(7/3k-6)+6/5=0
We get rid of parentheses
-4/7k-7/3k+6+6/5=0
We calculate fractions
378k^2/525k^2+(-300k)/525k^2+(-1225k)/525k^2+6=0
We multiply all the terms by the denominator
378k^2+(-300k)+(-1225k)+6*525k^2=0
Wy multiply elements
378k^2+3150k^2+(-300k)+(-1225k)=0
We get rid of parentheses
378k^2+3150k^2-300k-1225k=0
We add all the numbers together, and all the variables
3528k^2-1525k=0
a = 3528; b = -1525; c = 0;
Δ = b2-4ac
Δ = -15252-4·3528·0
Δ = 2325625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2325625}=1525$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1525)-1525}{2*3528}=\frac{0}{7056} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1525)+1525}{2*3528}=\frac{3050}{7056} =1525/3528 $
| x/8=30;80 | | 10+1z=4z | | (x-3)+(4x+3)+(3x-5)=2(2x+2)+2(4x-1/2) | | 7(z+64)=-49 | | -16x2+32=-128 | | 6y+240=2y+400 | | 2(x-4)^2-3=29 | | 3x-45+3x+4x+15=90 | | -25(10-a)=25a+250 | | f−-51=76 | | 2^n=5n | | -66=12a+42 | | -3(w+1)=-15 | | -78=5y+-18 | | Y=79•3,5x | | f−–51=76 | | 22-x/2=11 | | 13t-7=-465 | | 7x+43+11x+11=180 | | F(3)=12-7x | | 1/3(6x+1)=1/9(18x+9) | | u-6=−3 | | -3(k+-17)=-9 | | x2x+1=3x–5 | | 3x-45+3x+4x+15=125 | | 12+2x+31=32+x | | 7x+43+11x+11=90 | | 74=u+24 | | 5n-35+10=5(n+5) | | b10=-10 | | 2/x=16/8 | | 6x−10=4x+18 |