If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4/7k+-8/5=-4-8/5k
We move all terms to the left:
-4/7k+-8/5-(-4-8/5k)=0
Domain of the equation: 7k!=0
k!=0/7
k!=0
k∈R
Domain of the equation: 5k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-4/7k-(-8/5k-4)+-8/5=0
We add all the numbers together, and all the variables
-4/7k-(-8/5k-4)-8/5=0
We get rid of parentheses
-4/7k+8/5k+4-8/5=0
We calculate fractions
(-500k)/875k^2+56k/875k^2+(-56k)/875k^2+4=0
We multiply all the terms by the denominator
(-500k)+56k+(-56k)+4*875k^2=0
We add all the numbers together, and all the variables
56k+(-500k)+(-56k)+4*875k^2=0
Wy multiply elements
3500k^2+56k+(-500k)+(-56k)=0
We get rid of parentheses
3500k^2+56k-500k-56k=0
We add all the numbers together, and all the variables
3500k^2-500k=0
a = 3500; b = -500; c = 0;
Δ = b2-4ac
Δ = -5002-4·3500·0
Δ = 250000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{250000}=500$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-500)-500}{2*3500}=\frac{0}{7000} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-500)+500}{2*3500}=\frac{1000}{7000} =1/7 $
| -(8-2y)-4=-y | | d+1/5=4/5 | | r-27=62 | | 9x+x=91 | | q-1/8=7/8 | | 360=90+100+6y | | p=500 | | ((2x+1)/3)+((x-1)/4)=13/2 | | -16=-1/10(0)+b | | 12x–17=x+16 | | 8w+10=w+38 | | f-8=256; | | -2=-7(-1)+b | | 94=y+21 | | w+5.9=7 | | f-38=21 | | 6x-3=41/2 | | k-17=45 | | 256-8=r;r=8 | | n+35=59 | | 9=1(-1)+b | | 40=9+t | | 6(x1/2)=41/2 | | 6y-15=5y | | 4(10x+50)=440 | | r=8;256 | | 10=5x+-3x | | 6=-8(-1)+b | | 99=j+1 | | 6y–15=5y | | 10.9=4.8x-3.5 | | 9+4a=21 |