-4/5x+1/2x=-6

Simple and best practice solution for -4/5x+1/2x=-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4/5x+1/2x=-6 equation:



-4/5x+1/2x=-6
We move all terms to the left:
-4/5x+1/2x-(-6)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
-4/5x+1/2x+6=0
We calculate fractions
(-8x)/10x^2+5x/10x^2+6=0
We multiply all the terms by the denominator
(-8x)+5x+6*10x^2=0
We add all the numbers together, and all the variables
5x+(-8x)+6*10x^2=0
Wy multiply elements
60x^2+5x+(-8x)=0
We get rid of parentheses
60x^2+5x-8x=0
We add all the numbers together, and all the variables
60x^2-3x=0
a = 60; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·60·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*60}=\frac{0}{120} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*60}=\frac{6}{120} =1/20 $

See similar equations:

| 25x-5+11x-5=180 | | 4(2x+1)=6x-2 | | -4/5=1/2x=-6 | | (p-90)/80=2.05 | | -4y-5-2(-2y-5)+8=3 | | 4x+12+10x+14=180 | | 3(x+4)^2-2=16 | | 14x-4+100=180 | | x÷5=15÷25 | | x+114=110 | | 121x-31=48 | | 4+n/7=3 | | 12-44=4(x-1)-4 | | 9x-10+100=180 | | 6g+44=218 | | 3x+31=-2(x+7) | | 8+40x+5=13=5x | | 59+23v=795 | | 2-3t=66 | | -5x+7=-2x-3x | | -9+-21c=-261 | | -1-8x=10-3x | | 9b-4=5b+6+4b | | 18b−-124=916 | | 2|n/3-2|=8 | | k/4+49=56 | | 1+x/3=12 | | 5+7n=47 | | 23c-6c=15-10c | | 6(5r−11)=−(5−r) | | 5(x+1)=2x-6 | | 8x96=x |

Equations solver categories