-4(x-8)=x(3x+4)

Simple and best practice solution for -4(x-8)=x(3x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4(x-8)=x(3x+4) equation:



-4(x-8)=x(3x+4)
We move all terms to the left:
-4(x-8)-(x(3x+4))=0
We multiply parentheses
-4x-(x(3x+4))+32=0
We calculate terms in parentheses: -(x(3x+4)), so:
x(3x+4)
We multiply parentheses
3x^2+4x
Back to the equation:
-(3x^2+4x)
We get rid of parentheses
-3x^2-4x-4x+32=0
We add all the numbers together, and all the variables
-3x^2-8x+32=0
a = -3; b = -8; c = +32;
Δ = b2-4ac
Δ = -82-4·(-3)·32
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{7}}{2*-3}=\frac{8-8\sqrt{7}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{7}}{2*-3}=\frac{8+8\sqrt{7}}{-6} $

See similar equations:

| 11z+6z-12z=5 | | 0=5x^2+500x | | 17s+3s+2s-20s=6 | | 3(x=6)=39 | | n/62+89=94 | | 13h+h-2h-7h-2h=6 | | 2X^3+8x=5x^2+20 | | 19n-18n=15 | | 4(2x+4)=(7x+1)+(-3x+4) | | Y=4|x-3|-5 | | 10=f+10/3 | | 4x/7-3x/8=1 | | 109+6xx=3 | | -9m+17-5(m-1)=4m-(2m-5)-8m+1 | | (5-x)(X^2-1)(X^2+4)=0 | | 87-m/43=-75 | | -14p-4(5-6p)=6(p-2)-4 | | 7x³=63 | | 8x-5=95 | | k^2-k-10=0 | | xxx=9001 | | 2x+40=130 | | -(x+2)=2(3x+5) | | -6+8n=10n+8 | | 8p+20=-12 | | -3m+17=26 | | x(3x+2)(x^2-5x+6)=0 | | X^2-18=17x | | 9x-3(4+x)=14 | | 16y+56y+45y=0 | | 0=10t+5+10/3t2 | | F(x+5)=6x+6 |

Equations solver categories