If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4(x+5)=(5/3)(3x-12)
We move all terms to the left:
-4(x+5)-((5/3)(3x-12))=0
Domain of the equation: 3)(3x-12))!=0We add all the numbers together, and all the variables
x∈R
-4(x+5)-((+5/3)(3x-12))=0
We multiply parentheses
-4x-((+5/3)(3x-12))-20=0
We multiply parentheses ..
-((+15x^2+5/3*-12))-4x-20=0
We multiply all the terms by the denominator
-((+15x^2+5-4x*3*-12))-20*3*-12))=0
We calculate terms in parentheses: -((+15x^2+5-4x*3*-12)), so:We add all the numbers together, and all the variables
(+15x^2+5-4x*3*-12)
We get rid of parentheses
15x^2-4x*3*+5-12
We add all the numbers together, and all the variables
15x^2-4x*3*-7
Wy multiply elements
15x^2-12x^2-7
We add all the numbers together, and all the variables
3x^2-7
Back to the equation:
-(3x^2-7)
-(3x^2-7)=0
We get rid of parentheses
-3x^2+7=0
a = -3; b = 0; c = +7;
Δ = b2-4ac
Δ = 02-4·(-3)·7
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{21}}{2*-3}=\frac{0-2\sqrt{21}}{-6} =-\frac{2\sqrt{21}}{-6} =-\frac{\sqrt{21}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{21}}{2*-3}=\frac{0+2\sqrt{21}}{-6} =\frac{2\sqrt{21}}{-6} =\frac{\sqrt{21}}{-3} $
| 4w+3w-6w-w+4w=16 | | x+6(2x-4)=-19 | | 9y-27=180 | | 5m+3m-7m+4m=18 | | Y=-22x+30 | | 7^x=31 | | 48=0.03v | | -7+n/4=-6 | | x/26=52/208 | | -3p+9.6=0 | | -6(x-2)-3=9 | | 10x-8/3=6x+24/5 | | 12b+2b-13b=20 | | -3=v+9 | | 2(4x-3)-2=4-5x-12 | | 17d-4d+20d=20 | | 20j+3j+j-19j-3j=20 | | 2x-7+12=12x | | |4p-5|=|3p+26| | | b+(b+45)+(2b-90)+90+(3/2b)=540 | | 3=3×w | | −3x+5= −8x+10 | | 2^(5x-4)=6 | | 2-2n=3n+16 | | 5(p+10)=20 | | 8m+-m=-14 | | 3v-19v+14v=10 | | 14x+8=12+12x | | 272=-16k | | (Y/4)+(y/3)=5/9 | | 3.2-4d=2.3d=3 | | 10c+19.95c=139.95 |