-4(x+1)2x=3(2x-1)

Simple and best practice solution for -4(x+1)2x=3(2x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4(x+1)2x=3(2x-1) equation:



-4(x+1)2x=3(2x-1)
We move all terms to the left:
-4(x+1)2x-(3(2x-1))=0
We multiply parentheses
-8x^2-8x-(3(2x-1))=0
We calculate terms in parentheses: -(3(2x-1)), so:
3(2x-1)
We multiply parentheses
6x-3
Back to the equation:
-(6x-3)
We get rid of parentheses
-8x^2-8x-6x+3=0
We add all the numbers together, and all the variables
-8x^2-14x+3=0
a = -8; b = -14; c = +3;
Δ = b2-4ac
Δ = -142-4·(-8)·3
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{73}}{2*-8}=\frac{14-2\sqrt{73}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{73}}{2*-8}=\frac{14+2\sqrt{73}}{-16} $

See similar equations:

| -3(2x+3)-8=1 | | 2*(t=1)=10 | | 8x+2-10x=-2(x-2)+3 | | 4(-5y+-2)=-48 | | 2x+19=360 | | 2x+19=131 | | (t+3)(t+8)=0 | | 3x+12=8.5 | | x+49=92 | | -6x+4(3x-10)=-82 | | 22.5(10-y)+27.5y=205 | | -6x+4(3x-10)=82 | | 3x+12-5x+5=15 | | 3x+12−5x+5=15 | | -5(x-(-4)=-10 | | 3x+12−5x+5=−15 | | 14.2m= | | -2(w-4)=0-3+3w | | 22x-12=90 | | 22x-12=180 | | 8z+24=32 | | 17+r=95 | | -2w(-4)=|0-3|+3w | | 10x-9x=23 | | 14h-7=9h-42 | | -2(w-4)=|0-3|+3w | | 3x-20=10x-15 | | -8t+32=72 | | 18-46=-3x+10x-6x | | (3.8)^x=4 | | 1(-1y+-3)=-1 | | -7x-6(-2x+12)=-42 |

Equations solver categories