-4(v-2)=-4(v-8)8v

Simple and best practice solution for -4(v-2)=-4(v-8)8v equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4(v-2)=-4(v-8)8v equation:



-4(v-2)=-4(v-8)8v
We move all terms to the left:
-4(v-2)-(-4(v-8)8v)=0
We multiply parentheses
-4v-(-4(v-8)8v)+8=0
We calculate terms in parentheses: -(-4(v-8)8v), so:
-4(v-8)8v
We multiply parentheses
-32v^2+256v
Back to the equation:
-(-32v^2+256v)
We get rid of parentheses
32v^2-256v-4v+8=0
We add all the numbers together, and all the variables
32v^2-260v+8=0
a = 32; b = -260; c = +8;
Δ = b2-4ac
Δ = -2602-4·32·8
Δ = 66576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{66576}=\sqrt{16*4161}=\sqrt{16}*\sqrt{4161}=4\sqrt{4161}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-260)-4\sqrt{4161}}{2*32}=\frac{260-4\sqrt{4161}}{64} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-260)+4\sqrt{4161}}{2*32}=\frac{260+4\sqrt{4161}}{64} $

See similar equations:

| r-816/7=23 | | 2v+v-1+4=6v-7+7 | | r+314/18=29 | | 7x-(4-6x-9)=2(3x-5)+11 | | 744=2(h-331) | | 8c+4c+8+2=6c+7c+9+9 | | 24=4y+6 | | 3=b-960/13 | | 0.8x+30=-24 | | 5y+55+11=180 | | x-5/(-2)=x-1/(-3) | | 25(k-929)=975 | | 8c+4c-5+7=9c+4c-3+6 | | 31(n+3)=558 | | m/6=40 | | 300-10x=150 | | 5x+1+7x-1=119 | | 928=29(r-936) | | 4u/3=16 | | 2x+x+12=21 | | 11(m-911)=627 | | 14x-29=14x-29 | | 24(q+32)=936 | | 660=30(n+2) | | 0.5(4x-6)(x)=54 | | y+49/6=22 | | x-88=180 | | 7x+2+10x-31+124=180 | | (4.8+4)/w=8 | | 3b+6/2=4b-10/4 | | 6x-1+82=90 | | 9x+5=35 |

Equations solver categories