-4(u+4)=2u-8+4(2u+2)

Simple and best practice solution for -4(u+4)=2u-8+4(2u+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4(u+4)=2u-8+4(2u+2) equation:


Simplifying
-4(u + 4) = 2u + -8 + 4(2u + 2)

Reorder the terms:
-4(4 + u) = 2u + -8 + 4(2u + 2)
(4 * -4 + u * -4) = 2u + -8 + 4(2u + 2)
(-16 + -4u) = 2u + -8 + 4(2u + 2)

Reorder the terms:
-16 + -4u = 2u + -8 + 4(2 + 2u)
-16 + -4u = 2u + -8 + (2 * 4 + 2u * 4)
-16 + -4u = 2u + -8 + (8 + 8u)

Reorder the terms:
-16 + -4u = -8 + 8 + 2u + 8u

Combine like terms: -8 + 8 = 0
-16 + -4u = 0 + 2u + 8u
-16 + -4u = 2u + 8u

Combine like terms: 2u + 8u = 10u
-16 + -4u = 10u

Solving
-16 + -4u = 10u

Solving for variable 'u'.

Move all terms containing u to the left, all other terms to the right.

Add '-10u' to each side of the equation.
-16 + -4u + -10u = 10u + -10u

Combine like terms: -4u + -10u = -14u
-16 + -14u = 10u + -10u

Combine like terms: 10u + -10u = 0
-16 + -14u = 0

Add '16' to each side of the equation.
-16 + 16 + -14u = 0 + 16

Combine like terms: -16 + 16 = 0
0 + -14u = 0 + 16
-14u = 0 + 16

Combine like terms: 0 + 16 = 16
-14u = 16

Divide each side by '-14'.
u = -1.142857143

Simplifying
u = -1.142857143

See similar equations:

| 37+3y-15=14y-13-4y | | 7(6x-5)=60 | | 4+2(7x-1)=-2(2x-7)+2x | | 3(75)=600-5q | | 3m-8=2 | | 6y^2-12y-90=0 | | 135=600-5q | | 75=600-5q | | X^2+y^2-2x+17-x^2+1+y^2+64=34 | | 0.7x-0.9z-4=6 | | 1+3(2)= | | p(x)=-10 | | 225=600-5q | | 75=5q+300 | | 2x-1/x+2+x+2/2x-1=10/3 | | 3m-2=5+4m | | -(z+7)+(6z+1)=-2(z+1) | | -9(t-3)-(t+8)=10 | | 4(7+n)=16 | | 3+5(x-7)=6-3(x-8) | | 14p+23=6p-7 | | 5(z-12)+10=88 | | 0=600-5q | | 63+(3x+45)+(y-6)=180findy | | 2c-9=5 | | 0=5q-300 | | 63+(3x+45)+(y-6)=180 | | p=5q-300 | | 5(z-12)+10z=88 | | 3p=600-5q | | -5x+y=300 | | LG(x^2-2)=lgx |

Equations solver categories