-4(b+1)2b=3(2b-1)

Simple and best practice solution for -4(b+1)2b=3(2b-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4(b+1)2b=3(2b-1) equation:



-4(b+1)2b=3(2b-1)
We move all terms to the left:
-4(b+1)2b-(3(2b-1))=0
We multiply parentheses
-8b^2-8b-(3(2b-1))=0
We calculate terms in parentheses: -(3(2b-1)), so:
3(2b-1)
We multiply parentheses
6b-3
Back to the equation:
-(6b-3)
We get rid of parentheses
-8b^2-8b-6b+3=0
We add all the numbers together, and all the variables
-8b^2-14b+3=0
a = -8; b = -14; c = +3;
Δ = b2-4ac
Δ = -142-4·(-8)·3
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{73}}{2*-8}=\frac{14-2\sqrt{73}}{-16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{73}}{2*-8}=\frac{14+2\sqrt{73}}{-16} $

See similar equations:

| 7+7r=-91 | | t+14=8t | | 5c+7c+6c=180 | | 2x-3=7x-10+32 | | 3|5x-6|-10=-4 | | -3w+1=8 | | c+12=3c | | -84=-7d | | -3n-8=2n+7 | | 60+72+16u=180 | | 9/r=6/9 | | 10(3x+5)=130 | | 3(x-1)+2x=7x-(5+2x) | | a+90°=2a | | 2^2x-1=56 | | 10(3x+5=130 | | (2x+1)+(2x-11)+(x)=180 | | 98+2m=124-1m | | 3x+1=x=5 | | w+54=3w | | m-2/5=3/4 | | 1/2(2x+4)+3x=2x+1 | | w-3=2w | | 419.70=160+1.06x | | 5(x-5)=-75 | | .156x=25.7-x | | 2-(-b-8)+3b=22 | | 1+2.2b+4b=9.06 | | p+70=4p | | x-10=-2x | | 1.34=2n-4.3+3.64n | | -0.5x+4.4x=1.95 |

Equations solver categories