-4(3-x)(3-5x)=2(x-3x-1)

Simple and best practice solution for -4(3-x)(3-5x)=2(x-3x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4(3-x)(3-5x)=2(x-3x-1) equation:



-4(3-x)(3-5x)=2(x-3x-1)
We move all terms to the left:
-4(3-x)(3-5x)-(2(x-3x-1))=0
We add all the numbers together, and all the variables
-4(-1x+3)(-5x+3)-(2(-2x-1))=0
We multiply parentheses ..
-4(+5x^2-3x-15x+9)-(2(-2x-1))=0
We calculate terms in parentheses: -(2(-2x-1)), so:
2(-2x-1)
We multiply parentheses
-4x-2
Back to the equation:
-(-4x-2)
We multiply parentheses
-20x^2+12x+60x-(-4x-2)-36=0
We get rid of parentheses
-20x^2+12x+60x+4x+2-36=0
We add all the numbers together, and all the variables
-20x^2+76x-34=0
a = -20; b = 76; c = -34;
Δ = b2-4ac
Δ = 762-4·(-20)·(-34)
Δ = 3056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3056}=\sqrt{16*191}=\sqrt{16}*\sqrt{191}=4\sqrt{191}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(76)-4\sqrt{191}}{2*-20}=\frac{-76-4\sqrt{191}}{-40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(76)+4\sqrt{191}}{2*-20}=\frac{-76+4\sqrt{191}}{-40} $

See similar equations:

| .0000072=3.14*25*h | | 13(5-c)+10=101 | | 21+7n=42 | | a^2+10a+30=0 | | 7.2*10^-6=3.14*5^2*h | | 3a-4+6a-2=5a+22 | | 5+7=11t-25 | | t+2.54=1.38 | | 2/3(6x+3)=7x+2 | | 19-4c=7.2 | | -4(3-x)-(3-5x)=-1+x | | x=0.̅6 | | 43=3-4d | | X/5=2x/3+7/15 | | Y=-2x/2-3 | | 5/8n=8/5 | | 23=5r-17 | | -(8x+5)-6=10 | | -4-2x+613=x | | 5/8n=40/25 | | 23=5r-74 | | t-184.9=-108.3 | | Y=2x/5+11/5 | | -3(6x+4)-6=10 | | -2+x=½ | | (6x+30)°=0 | | 2-15-3x=180 | | F(x)=6(3x-2) | | -20=6s-5 | | -8+3=-2x-15 | | 25=7x-5x+15 | | 279=23-v |

Equations solver categories