-4(2-y)+3y=3y(y-4)

Simple and best practice solution for -4(2-y)+3y=3y(y-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4(2-y)+3y=3y(y-4) equation:



-4(2-y)+3y=3y(y-4)
We move all terms to the left:
-4(2-y)+3y-(3y(y-4))=0
We add all the numbers together, and all the variables
-4(-1y+2)+3y-(3y(y-4))=0
We add all the numbers together, and all the variables
3y-4(-1y+2)-(3y(y-4))=0
We multiply parentheses
3y+4y-(3y(y-4))-8=0
We calculate terms in parentheses: -(3y(y-4)), so:
3y(y-4)
We multiply parentheses
3y^2-12y
Back to the equation:
-(3y^2-12y)
We add all the numbers together, and all the variables
7y-(3y^2-12y)-8=0
We get rid of parentheses
-3y^2+7y+12y-8=0
We add all the numbers together, and all the variables
-3y^2+19y-8=0
a = -3; b = 19; c = -8;
Δ = b2-4ac
Δ = 192-4·(-3)·(-8)
Δ = 265
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{265}}{2*-3}=\frac{-19-\sqrt{265}}{-6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{265}}{2*-3}=\frac{-19+\sqrt{265}}{-6} $

See similar equations:

| -119+3x=-8x+57 | | 140-8x=160-12x | | 3(1x+1)-5=3x-2 | | 2/3+3k=71/12 | | 4y=38-½(4y+16) | | 2x-58=-5x+40 | | x²+2x-13=130 | | 2-2+n=64+n | | x+9=9(x=1) | | 3n^2+n-30=0 | | 0.135x+0.09(30,000−x)=3,285 | | 4(1/4)+x=5 | | -6.4-6x=20.6 | | 7x-3x+7=3(x-4)+19 | | -10=10(k–9) | | 10p+5(p-3)=15 | | C(x)=45.50-0.0x | | 2x+18=11x+9 | | 36=-2d+8 | | k=0.04 | | -97+9x=-x+53 | | -149+7x=49-2x | | 3x-(4x+7)=2x-22 | | 4.3+10m=8.42 | | 11x-37+5x+5=180 | | n4+ 9=12 | | 39=-5d-5 | | 4x-20-3x-30=13 | | 3(6x+-1)=11x+-45 | | -7|-3-3x|=21 | | 3(6v-4)=78 | | -2/3+(-3/4x)=-4/5 |

Equations solver categories