If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4(-4y+6)-2y=2y(y-6)-9
We move all terms to the left:
-4(-4y+6)-2y-(2y(y-6)-9)=0
We add all the numbers together, and all the variables
-2y-4(-4y+6)-(2y(y-6)-9)=0
We multiply parentheses
-2y+16y-(2y(y-6)-9)-24=0
We calculate terms in parentheses: -(2y(y-6)-9), so:We add all the numbers together, and all the variables
2y(y-6)-9
We multiply parentheses
2y^2-12y-9
Back to the equation:
-(2y^2-12y-9)
14y-(2y^2-12y-9)-24=0
We get rid of parentheses
-2y^2+14y+12y+9-24=0
We add all the numbers together, and all the variables
-2y^2+26y-15=0
a = -2; b = 26; c = -15;
Δ = b2-4ac
Δ = 262-4·(-2)·(-15)
Δ = 556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{556}=\sqrt{4*139}=\sqrt{4}*\sqrt{139}=2\sqrt{139}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{139}}{2*-2}=\frac{-26-2\sqrt{139}}{-4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{139}}{2*-2}=\frac{-26+2\sqrt{139}}{-4} $
| 40+.3x=20+.5 | | 4.3x-2.1x-2.3x=7.6 | | 2/5x+1=7/3 | | 2(-3x-4)=22 | | 6x-6=1x+13.25 | | x-35=6x+10 | | 0.01(x-10)=10 | | 2x^2+x-207=0 | | 9d-4d-2d-+8=-3d | | -5(x-3)+3x-2=45 | | 5(3x+5)=3(2x+23) | | 6(-4+6p)=84 | | 6x−2=2(3x−1) | | 2x-14=6x+18 | | 2÷5x+1=7÷3 | | w^2=9w-54 | | -3h+2=1 | | 0=1.8t-5(t^2) | | 0=1.8t-5t | | 43-(2x+1)=B | | 8+2x=3x+4 | | 3z−5=13 | | 2x-12=6x+18 | | 6x+46=2x+14 | | 11+39=-5(9x-10) | | -10+7f=2f | | -8-5n64+3n=64+3n | | 176=101-v | | 2x+2x*4=60 | | 23x+125=10 | | 2/3(3x+9)=-2x(2x+6) | | -(1+4x)=4(1-x)-5 |