-3y2+4y2=14

Simple and best practice solution for -3y2+4y2=14 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3y2+4y2=14 equation:



-3y^2+4y^2=14
We move all terms to the left:
-3y^2+4y^2-(14)=0
We add all the numbers together, and all the variables
y^2-14=0
a = 1; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·1·(-14)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*1}=\frac{0-2\sqrt{14}}{2} =-\frac{2\sqrt{14}}{2} =-\sqrt{14} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*1}=\frac{0+2\sqrt{14}}{2} =\frac{2\sqrt{14}}{2} =\sqrt{14} $

See similar equations:

| 10x-79=2×+49 | | x+7-6(x-7)=-7-4(x=2) | | y5−10y4+7y3=0 | | 1+1/7x=T | | 60=12x+144 | | 8c-3c=25 | | 2.25t+7=13.5t+16 | | -14x+28+6x=-44* | | v/4+7=18 | | 10(c−87)=60 | | 39-13x=52 | | 2q+10=20 | | 24a-22=-4(1+6a | | -45=10-5x | | 2-3(z+5)=20 | | 4x-80=2x+300 | | 8x−5*0=−11 | | 6x-66=24 | | 7-3/2t=28 | | 2x+5/9=x-7/3 | | 7x+2(4x+5)=175 | | 6x+14=3(2x=5) | | -4t=8 | | 16k^2-24=0 | | 0.052+0.9z=51 | | -7-2x=-8-3x | | -9=3x+15 | | 7-(2x/9)=15 | | 6x-50=x-20 | | 4x+2(7x-11)=176 | | x^2+5x-134=0 | | 5-x2=5x-7 |

Equations solver categories