If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3y(y+4)-2y=2(y+1)
We move all terms to the left:
-3y(y+4)-2y-(2(y+1))=0
We add all the numbers together, and all the variables
-2y-3y(y+4)-(2(y+1))=0
We multiply parentheses
-3y^2-2y-12y-(2(y+1))=0
We calculate terms in parentheses: -(2(y+1)), so:We add all the numbers together, and all the variables
2(y+1)
We multiply parentheses
2y+2
Back to the equation:
-(2y+2)
-3y^2-14y-(2y+2)=0
We get rid of parentheses
-3y^2-14y-2y-2=0
We add all the numbers together, and all the variables
-3y^2-16y-2=0
a = -3; b = -16; c = -2;
Δ = b2-4ac
Δ = -162-4·(-3)·(-2)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{58}}{2*-3}=\frac{16-2\sqrt{58}}{-6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{58}}{2*-3}=\frac{16+2\sqrt{58}}{-6} $
| 11x+8=9x-2 | | 4(2a+2)+17=13 | | 5a=-210+3a | | (-1/3y+4)-1=4/3y-3+1y | | -2(-3x+1)=2(2x-3) | | 12x+13=3(4x) | | x−54=x−23 | | 2x+5+3x+x=23 | | 6v+5(v+8)=-8v+21 | | (2x+4)=135 | | -2u-27=3(u-4) | | 0.20(y-8)+0.10y=0.14y-0.2 | | 4x+8=41 | | 4(2a+2)+15=13 | | 12+4x=6x+10−2x | | 120+40x=140+35 | | x–7=54 | | 11/x=5/2 | | 2x-8=4x16 | | Z=-2x-4 | | 2v-7+3(2v+3)=-2(v+8) | | x+6=2x−11 | | 10x+20=7x+32 | | -8(1+6n)=-3n-8 | | 6(u+3)-8u=38 | | 3x+1-5x=21 | | 60=-10(x-2) | | 8x+6+2x-7=2x+8x-4 | | 6x+51=4x+59 | | (9y+17)=(11y−1) | | 75=v-20 | | 3x-16=4x-7 |