If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+4=0
a = -3; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-3)·4
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*-3}=\frac{0-4\sqrt{3}}{-6} =-\frac{4\sqrt{3}}{-6} =-\frac{2\sqrt{3}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*-3}=\frac{0+4\sqrt{3}}{-6} =\frac{4\sqrt{3}}{-6} =\frac{2\sqrt{3}}{-3} $
| 8x-8=3x+1 | | 7x-3=2(x+2) | | 2h2+8h+3=3 | | 13x+3=7x+3=180 | | 6x+12+7x−92=180 | | 2(3x-2)=(48-2x) | | 180-6x=180 | | (n+5)(n-2)=0 | | 9x+86+6x+58=90 | | -181-7x=2x+107 | | 3^1.28x=65 | | 87+9x-1+6x+58=90 | | M+4/4=m+1/2 | | 3x+4-5x=11 | | 2/3x+1/6=11/22 | | 3x-30=105 | | (4x-1)÷1=3x | | 7/3=x/12 | | -7x+0=-15 | | 10^v=100 | | -7n+10+n=34 | | 6=2b−2 | | 0+6y=-15 | | 8^d=64 | | 8z+2z-8z=8 | | 8t+2t+2t-3t+2=20 | | x-4+44=74 | | -3f+2=3( | | 2x-4*x-4=70 | | 2b-2b+5b-5=20 | | 4x+8+3x-3=180 | | 18v-11v-5=16 |