-3x-5=(x+3)(x+3)

Simple and best practice solution for -3x-5=(x+3)(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3x-5=(x+3)(x+3) equation:



-3x-5=(x+3)(x+3)
We move all terms to the left:
-3x-5-((x+3)(x+3))=0
We multiply parentheses ..
-((+x^2+3x+3x+9))-3x-5=0
We calculate terms in parentheses: -((+x^2+3x+3x+9)), so:
(+x^2+3x+3x+9)
We get rid of parentheses
x^2+3x+3x+9
We add all the numbers together, and all the variables
x^2+6x+9
Back to the equation:
-(x^2+6x+9)
We add all the numbers together, and all the variables
-3x-(x^2+6x+9)-5=0
We get rid of parentheses
-x^2-3x-6x-9-5=0
We add all the numbers together, and all the variables
-1x^2-9x-14=0
a = -1; b = -9; c = -14;
Δ = b2-4ac
Δ = -92-4·(-1)·(-14)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-5}{2*-1}=\frac{4}{-2} =-2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+5}{2*-1}=\frac{14}{-2} =-7 $

See similar equations:

| 9a=+72 | | B/3+b/2=-15 | | 14-9i/7i=0 | | -9x+15=-22-4(1x+12) | | 8/9+t=17-18 | | 7×x+-63=-14 | | 9^x=(1/3)^x+3 | | 14+x=5+3x | | 5-i/5-3i=0 | | -1=r+3*3 | | 3x+7=(x-1)(x-1) | | 92+n=10 | | 2-i/1-4i=0 | | 9x+7x-8x-5=11 | | -9x+15=-22-41 | | 5x+6=-2x-50 | | 6n-18=4(n+2 | | 0=h+|-14| | | 2(2x+2)=-5(3x-1)+2x | | 5/6•6-1/2-2/3•y=4/3 | | 30=-4.9x^2+27x+2.4 | | 3+9i/1+i=0 | | 1/6x+11/6=-40 | | b²+3b-40=0 | | 5(x-64)-3(x+24)=48-6(x-16) | | 2000-0.25=x | | 36-3x=-9+3x | | -y/2.6=3.2 | | 2000-x=0.25 | | 12m=0.96 | | X3+5x2+6x=0 | | 4(x+12)=x-6 |

Equations solver categories