-3x-4x(x-2)=-(x+4)-6

Simple and best practice solution for -3x-4x(x-2)=-(x+4)-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3x-4x(x-2)=-(x+4)-6 equation:



-3x-4x(x-2)=-(x+4)-6
We move all terms to the left:
-3x-4x(x-2)-(-(x+4)-6)=0
We multiply parentheses
-4x^2-3x+8x-(-(x+4)-6)=0
We calculate terms in parentheses: -(-(x+4)-6), so:
-(x+4)-6
We get rid of parentheses
-x-4-6
We add all the numbers together, and all the variables
-1x-10
Back to the equation:
-(-1x-10)
We add all the numbers together, and all the variables
-4x^2+5x-(-1x-10)=0
We get rid of parentheses
-4x^2+5x+1x+10=0
We add all the numbers together, and all the variables
-4x^2+6x+10=0
a = -4; b = 6; c = +10;
Δ = b2-4ac
Δ = 62-4·(-4)·10
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-14}{2*-4}=\frac{-20}{-8} =2+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+14}{2*-4}=\frac{8}{-8} =-1 $

See similar equations:

| v/7=10 | | 10–8x=50 | | 6x−4−8x=15 | | 26+2x=-(5-5x) | | 2(9x+34)=2(8x-25) | | 1/2(x-20)=-1/2x-5 | | 2/5=-10/3+p | | 3x-7=10x+35 | | 8(6k+8)=-k-34 | | x³=147 | | 2(9x+34)=(8x-25) | | b-33=7 | | 10x^2+15x+7=1-2x | | 16+2x=2(x+8) | | -4(5k-7)+2k=-3(9k+5) | | 11=-2x-4+3, | | 20=w+1 | | 6+2x-2x=6 | | -x=9x+90 | | s4−2=2 | | 6x+12=11x-88 | | 1/4s-3=33/10s-7 | | -102-6x=150+3x | | x+(3)=(-13)=(9) | | 17=-37-6x | | 11=-2x-4+3 | | 3/10=b+7 | | 10(6b+11)=-190 | | 13j-4j+4j-7j-5j=8 | | 65=15+4x | | 6x+12=11x-8 | | x-6/3=2 |

Equations solver categories