-3x(x-4)=-5(8x+5)

Simple and best practice solution for -3x(x-4)=-5(8x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3x(x-4)=-5(8x+5) equation:



-3x(x-4)=-5(8x+5)
We move all terms to the left:
-3x(x-4)-(-5(8x+5))=0
We multiply parentheses
-3x^2+12x-(-5(8x+5))=0
We calculate terms in parentheses: -(-5(8x+5)), so:
-5(8x+5)
We multiply parentheses
-40x-25
Back to the equation:
-(-40x-25)
We get rid of parentheses
-3x^2+12x+40x+25=0
We add all the numbers together, and all the variables
-3x^2+52x+25=0
a = -3; b = 52; c = +25;
Δ = b2-4ac
Δ = 522-4·(-3)·25
Δ = 3004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3004}=\sqrt{4*751}=\sqrt{4}*\sqrt{751}=2\sqrt{751}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-2\sqrt{751}}{2*-3}=\frac{-52-2\sqrt{751}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+2\sqrt{751}}{2*-3}=\frac{-52+2\sqrt{751}}{-6} $

See similar equations:

| 8-3g=2 | | 4(k+3)-(3k-6)=3 | | 3=g+32 | | k/2+2=27 | | k2+2=27 | | 3(7x)=7x(3) | | 1/3k-(k+1/5)=1/15(k+5) | | 4x+18+5x+27=180 | | z=5z=5 | | 9+x=7.8+0.6x | | (3x)+(2x)+10=20 | | 6x=2x40 | | 5.00+.65x=10.00+0.45x | | 5x+2/x-4=10x/2x-3 | | (7x+4)(5x+6)=0 | | 2x-5(x-2)=-8+5x-14 | | 3(x+8)=2(x-7) | | 2(2v+11)+2(2v+11)=76 | | 2(-3)+6y=30 | | 5x+3x-10=2x+2 | | c=9c=9 | | 9.75x-71.4=11.05x-20.6 | | 5x+3×-10=2×+2 | | 9.75x-71.4=11.05x-20.7 | | 5w+8=63 | | (5x+2)-9=5x+(2-9) | | 15+4v=63 | | 5x+3x-10=2×+2 | | w/3-11=7 | | 2x-11=161 | | (680-4x)=0 | | 4(b-2)=-3(b-3) |

Equations solver categories