-3x(x+6)=-3(2x+4)

Simple and best practice solution for -3x(x+6)=-3(2x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3x(x+6)=-3(2x+4) equation:



-3x(x+6)=-3(2x+4)
We move all terms to the left:
-3x(x+6)-(-3(2x+4))=0
We multiply parentheses
-3x^2-18x-(-3(2x+4))=0
We calculate terms in parentheses: -(-3(2x+4)), so:
-3(2x+4)
We multiply parentheses
-6x-12
Back to the equation:
-(-6x-12)
We get rid of parentheses
-3x^2-18x+6x+12=0
We add all the numbers together, and all the variables
-3x^2-12x+12=0
a = -3; b = -12; c = +12;
Δ = b2-4ac
Δ = -122-4·(-3)·12
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12\sqrt{2}}{2*-3}=\frac{12-12\sqrt{2}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12\sqrt{2}}{2*-3}=\frac{12+12\sqrt{2}}{-6} $

See similar equations:

| 2(m-5)+2=12 | | 16p+11=-20+14p-7 | | 28+-1x=19 | | 4(5x/4)=4x+ | | 8x-71=x+4 | | 3(q+2)+1=10 | | 1.6n-14.37=-12.6+1.7n | | 1/2-20-x=3(2x-1)-(2x-1) | | 7+2k=15 | | -5x-7+7x=6x-1 | | 2x-8=4-4x | | 4(y-15)+-1=11 | | -14y-19=-12y+19 | | 10x+21=31 | | 11+x+11+x+11+x=45 | | 2a²-5a+2=0 | | -(k-6)=3 | | 66+p=123 | | 4=2(n-6) | | 1=8x=11-2x | | 1.2×m+0.12=12 | | 7x8=9x | | 16v+10=14v | | -3x-6x+4=8x-30 | | -16-7b-14b=-15b+20 | | x+2x+7=3x-15 | | 0.25x-37.75=1+2x | | 2x+6+3=-5x+16 | | 5t=6t-7 | | 10-6u=-10-4u | | 3x+4x=2x-15 | | −7+4c=7c+6* |

Equations solver categories