If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x(x+4)-4x=2(x-3)+3
We move all terms to the left:
-3x(x+4)-4x-(2(x-3)+3)=0
We add all the numbers together, and all the variables
-4x-3x(x+4)-(2(x-3)+3)=0
We multiply parentheses
-3x^2-4x-12x-(2(x-3)+3)=0
We calculate terms in parentheses: -(2(x-3)+3), so:We add all the numbers together, and all the variables
2(x-3)+3
We multiply parentheses
2x-6+3
We add all the numbers together, and all the variables
2x-3
Back to the equation:
-(2x-3)
-3x^2-16x-(2x-3)=0
We get rid of parentheses
-3x^2-16x-2x+3=0
We add all the numbers together, and all the variables
-3x^2-18x+3=0
a = -3; b = -18; c = +3;
Δ = b2-4ac
Δ = -182-4·(-3)·3
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{10}}{2*-3}=\frac{18-6\sqrt{10}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{10}}{2*-3}=\frac{18+6\sqrt{10}}{-6} $
| 7x+2=-4x+17 | | (x-1)=3x-19 | | 12x=728 | | 10x+5=27x+18 | | 9z-3=24 | | 4y+8y+21=129 | | ﹣2(a﹣3)=14 | | 2(x-3)+4x=-3(x-2)-4 | | 3/1.2=-1.4/x | | 5x/2-2×+3/6=5/3 | | 20x+25x-3+48=180 | | p/4-3=7/16 | | 4x2−14x+6=0. | | y/32=-5/4 | | 32x=320 | | 18t^2-17t+1=0 | | 5+2(x+3)=3x+10 | | 5-3⋅(3+5x)=71 | | 1/3(x+9)=1/7(4x-7) | | 20y-y=0 | | 2=11+3(x+3 | | y=12*10+y/20 | | 7+10x=-53 | | 4x+120=36 | | 7x+9=5x+3/4 | | s/5=25 | | 15p=18 | | 13=w+9 | | –7.56=1.26m | | 4a÷6=10 | | 8z−7z=18 | | 18s−15s=18 |