If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3/8x-7/24x+1/3=-56
We move all terms to the left:
-3/8x-7/24x+1/3-(-56)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 24x!=0We add all the numbers together, and all the variables
x!=0/24
x!=0
x∈R
-3/8x-7/24x+56+1/3=0
We calculate fractions
384x^2/1728x^2+(-648x)/1728x^2+(-504x)/1728x^2+56=0
We multiply all the terms by the denominator
384x^2+(-648x)+(-504x)+56*1728x^2=0
Wy multiply elements
384x^2+96768x^2+(-648x)+(-504x)=0
We get rid of parentheses
384x^2+96768x^2-648x-504x=0
We add all the numbers together, and all the variables
97152x^2-1152x=0
a = 97152; b = -1152; c = 0;
Δ = b2-4ac
Δ = -11522-4·97152·0
Δ = 1327104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1327104}=1152$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1152)-1152}{2*97152}=\frac{0}{194304} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1152)+1152}{2*97152}=\frac{2304}{194304} =3/253 $
| 16=18-10d | | 2343n+567890=1234567890 | | 2/3a+2=1-3(4a+1) | | x+0.2=120 | | 7x+9x-75=125-9x | | 4x+1-3x=-1 | | 28c=672 | | 0.7p+4.6=-0.2p | | 85=7x+5x+1 | | 1-5c=31 | | 7+3x+x=51 | | 7x+6+3x=-14 | | x+19/3=5 | | 132=n+32 | | 4-3x+4x=11 | | -4x+5x=9 | | 4=3x+x-4 | | 6(X-1/2)-3x=5(X-7) | | 1-3x=2x+4 | | -53=-7x+x+7 | | -16=x-24 | | 38=x+5x-10 | | -98+x=-5x+58 | | 8+7x+3x=118 | | -62-5x=78-10x | | 1/2y+6=11 | | 4x-7=4x+4x | | 9x-148=76+x | | 2(x+7)=5x+8-9x | | -2x-8=-7-5x | | -35+11x=6x+80 | | -13-9x=11-10x |