-3/5x-7/10x=-56

Simple and best practice solution for -3/5x-7/10x=-56 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3/5x-7/10x=-56 equation:



-3/5x-7/10x=-56
We move all terms to the left:
-3/5x-7/10x-(-56)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
We add all the numbers together, and all the variables
-3/5x-7/10x+56=0
We calculate fractions
(-30x)/50x^2+(-35x)/50x^2+56=0
We multiply all the terms by the denominator
(-30x)+(-35x)+56*50x^2=0
Wy multiply elements
2800x^2+(-30x)+(-35x)=0
We get rid of parentheses
2800x^2-30x-35x=0
We add all the numbers together, and all the variables
2800x^2-65x=0
a = 2800; b = -65; c = 0;
Δ = b2-4ac
Δ = -652-4·2800·0
Δ = 4225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4225}=65$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-65)-65}{2*2800}=\frac{0}{5600} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-65)+65}{2*2800}=\frac{130}{5600} =13/560 $

See similar equations:

| 8n+3=3+4n+4n | | -2+g=2g-8 | | -57=u/5 | | 9+4j=3j | | 10(v+2)-4v=2(3v+4)-13 | | 2m-10=6m+18 | | 15x+30=40x-20 | | 9(x+1)=7(x+4) | | 1+5q=-4q-35 | | 3x+3x/6=24 | | 18y=10 | | -1-7n+n=-8-7n | | ((3x^2)+10x-32)=0 | | 8x=5(6-3x)+18 | | −8=n−9 | | -2-5c=-7c-4 | | 6x+6=4x+2. | | 43-13=5(x-5) | | 4(86u-47)=-4(7u-604) | | 37+3y-16=12y-9-3y | | 4j+6=30 | | 8x+5=5x+9 | | -2t=-t-7 | | 8y-4=3y-19 | | 7a+42=7a-14 | | -10z=-9z+5 | | 3=14w-19 | | -2.5x=15 | | -7(z-6)=-60 | | -10-4v=v+10 | | X/x×15=4/9 | | 5x-8=-9+4 |

Equations solver categories