If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3/4k+5/2=3+4/9k
We move all terms to the left:
-3/4k+5/2-(3+4/9k)=0
Domain of the equation: 4k!=0
k!=0/4
k!=0
k∈R
Domain of the equation: 9k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-3/4k-(4/9k+3)+5/2=0
We get rid of parentheses
-3/4k-4/9k-3+5/2=0
We calculate fractions
1620k^2/144k^2+(-108k)/144k^2+(-64k)/144k^2-3=0
We multiply all the terms by the denominator
1620k^2+(-108k)+(-64k)-3*144k^2=0
Wy multiply elements
1620k^2-432k^2+(-108k)+(-64k)=0
We get rid of parentheses
1620k^2-432k^2-108k-64k=0
We add all the numbers together, and all the variables
1188k^2-172k=0
a = 1188; b = -172; c = 0;
Δ = b2-4ac
Δ = -1722-4·1188·0
Δ = 29584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{29584}=172$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-172)-172}{2*1188}=\frac{0}{2376} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-172)+172}{2*1188}=\frac{344}{2376} =43/297 $
| 5x2+3x=50 | | 1/2x-3=-3/2x+4 | | 62x+400=30x | | -72=-8(n+1)+8(8-n) | | 33=-6x=3 | | 4-2x=162 | | -5p-2(5-6p)=2(p-6)-8 | | 17x-3+55=29x=4 | | 7x-5x-5=11 | | Y-1=1/2(1/2x-4) | | 1.10m+2.50=2.25m+8.50 | | 3(x+5)-9=-18 | | 8(1-4x)=-7 | | 10+10b=-160 | | 36=13 | | 6b=8b | | b(3b)=27 | | 6w=–8+5w | | 1.10+2.50m=2.25+8.50m | | -5(4x-1)=-20x=5 | | 80=-0.5=x | | -8x-7=-11 | | 5x-1=9×+41 | | 17x+9=-4x+2 | | 5/2(3x+9)=-1 | | (3+5x)(2-3x)=12-5x2 | | 2x+4(x-1)=7x-8 | | c+35=15 | | 21=y9 | | 105-28y/3-2y=1 | | 3(2x+4)-3=27 | | 1n÷6+18=25 |