-3/2w-7/2=1/5w-6

Simple and best practice solution for -3/2w-7/2=1/5w-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3/2w-7/2=1/5w-6 equation:



-3/2w-7/2=1/5w-6
We move all terms to the left:
-3/2w-7/2-(1/5w-6)=0
Domain of the equation: 2w!=0
w!=0/2
w!=0
w∈R
Domain of the equation: 5w-6)!=0
w∈R
We get rid of parentheses
-3/2w-1/5w+6-7/2=0
We calculate fractions
(-15w)/40w^2+(-8w)/40w^2+(-35w)/40w^2+6=0
We multiply all the terms by the denominator
(-15w)+(-8w)+(-35w)+6*40w^2=0
Wy multiply elements
240w^2+(-15w)+(-8w)+(-35w)=0
We get rid of parentheses
240w^2-15w-8w-35w=0
We add all the numbers together, and all the variables
240w^2-58w=0
a = 240; b = -58; c = 0;
Δ = b2-4ac
Δ = -582-4·240·0
Δ = 3364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3364}=58$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-58)-58}{2*240}=\frac{0}{480} =0 $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-58)+58}{2*240}=\frac{116}{480} =29/120 $

See similar equations:

| (3x^2-12x)=0 | | 1.5x^2+5x-84=0 | | -2/3y-1/2=-2/5 | | 3x-6÷4=4x-8 | | 6x−9=2x+7 | | 4/3+-1/3=x+7 | | X+34x+168=0 | | 1.5x^2-5x-84=0 | | (3(a-2))÷4=4a-8 | | (3(x-2))÷4=4x-8 | | 2x+2x-2=4 | | 2(4x-3)=x=3x-5 | | 4x-2=1+2x+3 | | 7*x=15 | | 2x+3-4=8 | | 1/2x^2+x=0 | | (1/2)x^2+x=0 | | 70=x+3/7x | | 2x2+40x+198=0 | | 2(x-1)=33-6(2x+1) | | 9y+6=3y-4 | | 7m-3=1+5m | | -1/2y-(y+2/9)=1/36(y-7) | | (3z+2/z+1)=z+3 | | 10y+10=8-8y | | 1/2x-1/2x=x+1 | | 1/2x-1/2x=x-1 | | 0=3t^2-6t^2+2 | | .6.32=19.68+8x | | 0=9t^2-18t^2+6t | | 6.32=8x | | 2(4y-1=18 |

Equations solver categories