-3/2u-7/2=4/3u-7

Simple and best practice solution for -3/2u-7/2=4/3u-7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3/2u-7/2=4/3u-7 equation:



-3/2u-7/2=4/3u-7
We move all terms to the left:
-3/2u-7/2-(4/3u-7)=0
Domain of the equation: 2u!=0
u!=0/2
u!=0
u∈R
Domain of the equation: 3u-7)!=0
u∈R
We get rid of parentheses
-3/2u-4/3u+7-7/2=0
We calculate fractions
(-9u)/24u^2+(-32u)/24u^2+(-21u)/24u^2+7=0
We multiply all the terms by the denominator
(-9u)+(-32u)+(-21u)+7*24u^2=0
Wy multiply elements
168u^2+(-9u)+(-32u)+(-21u)=0
We get rid of parentheses
168u^2-9u-32u-21u=0
We add all the numbers together, and all the variables
168u^2-62u=0
a = 168; b = -62; c = 0;
Δ = b2-4ac
Δ = -622-4·168·0
Δ = 3844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3844}=62$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-62)-62}{2*168}=\frac{0}{336} =0 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-62)+62}{2*168}=\frac{124}{336} =31/84 $

See similar equations:

| -9x-4=-175 | | -4(4x-4)+2x-4=−4(4x−4)+2x−4=-30 | | (-7y2)=(5y4) | | -3(-8v+6)-3v=7(v-2)-2 | | 7-2(x-2)=5x+2 | | 5(7+2n)+8(6n-4)=n+8-5 | | 7(7x+1)-6(1+8x)=0 | | 6d=3/5 | | 6(6-4x)=-18+3x | | 12c=-144 | | (6x-1)x(4x+6)=50x | | (2x+38)+(x-6)+(x)=180 | | 47=-9+8p | | -2n+8=22 | | 200=10^3x | | m/9+8=6 | | 10-3+3x/2=3x+5x-2/3 | | -4r+9=13 | | 4z+8=2z+13 | | -3b+4=-17 | | 3n+31=-4-2n | | -8d+6=-18 | | -6y=6-(-1) | | 34–x=26 | | -28=-x/9 | | 2w-18=20 | | -4g-6=-2 | | 3/4x+5/8=2x | | 6-4s=9s | | -9a+1=-53 | | 10x+12=2(5x=6) | | -10x/3+3=33 |

Equations solver categories