If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3/2k+-9/8=3-7/8k
We move all terms to the left:
-3/2k+-9/8-(3-7/8k)=0
Domain of the equation: 2k!=0
k!=0/2
k!=0
k∈R
Domain of the equation: 8k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-3/2k-(-7/8k+3)+-9/8=0
We add all the numbers together, and all the variables
-3/2k-(-7/8k+3)-9/8=0
We get rid of parentheses
-3/2k+7/8k-3-9/8=0
We calculate fractions
(-1536k)/1024k^2+14k/1024k^2+(-18k)/1024k^2-3=0
We multiply all the terms by the denominator
(-1536k)+14k+(-18k)-3*1024k^2=0
We add all the numbers together, and all the variables
14k+(-1536k)+(-18k)-3*1024k^2=0
Wy multiply elements
-3072k^2+14k+(-1536k)+(-18k)=0
We get rid of parentheses
-3072k^2+14k-1536k-18k=0
We add all the numbers together, and all the variables
-3072k^2-1540k=0
a = -3072; b = -1540; c = 0;
Δ = b2-4ac
Δ = -15402-4·(-3072)·0
Δ = 2371600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2371600}=1540$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1540)-1540}{2*-3072}=\frac{0}{-6144} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1540)+1540}{2*-3072}=\frac{3080}{-6144} =-385/768 $
| 4i+7=5 | | 3000=y=600 | | 1/4x+x=130 | | y*0.17+(1–y)*0.07=0.15 | | 5+2x=6x+41 | | b+11=25 | | (3/4)y=(8/20) | | n-46=-20 | | x^2-12x-48=-84 | | 9x+2=3x+32 | | 5(1-x)-2x=3(x+4)+13 | | (7x-4)-(6x+8)=90 | | 2x+6=-27+5x | | 5y^2+20y+25=0 | | 8x-6=2x-6+6x | | (7x-4)-(6x+8)=180 | | x÷3+7=13 | | 2q+3.4=3.9q-10.85 | | 1+3*x=9-4 | | x/3x–8=8x–20 | | x-10=58 | | -4x-6=21+5x | | 1/4+1/2+r=-3/4 | | 2(3x+2)=3x+16 | | 1+3•x=9-4 | | 0.1(x+40)-0.05(x-60)=4.5 | | 5-2y=-25 | | 16/x+4=2 | | 21-2x=5 | | -3+3x=5x-3 | | 60x=4200+60x | | 10/3+3s=4/3(-3s-2) |